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Abstract—IoT environments are typically composed of hun-
dreds of geographically distributed sensors. Usually, these sensors
are not physically protected from unauthorized access, which
makes them vulnerable to exploitation where they can be ma-
nipulated to send incorrect data. The identification of such
compromised sensors can be helpful in the process of exclusion
or verification by administrators. To perform the detection of
anomalous sensors, several algorithms can be used. However,
based on the algorithm used, this evaluation may be delayed
or can be inaccurate. Therefore, to detect sensors with different
behavior compared to others, we evaluated the trade-off between
performance and accuracy of different anomalies detection al-
gorithms. The results showed that Mahalanobis Distance could
improve the trade-off between detecting multiple anomalous
sensors at execution time and accuracy to avoid false-positives.

I. INTRODUCTION

The popularization and low-cost of electronic devices such
as sensors and actuators and networking technologies, along
with the rise of the large-scale environment such as clouds
enable the storage and analysis of a large amount of data in
real time. This set of capabilities drove the emergence of the
Internet of Things (IoT).

IoT [1] refers to implementation of machine-to-machine
communication (M2M), and this paradigm is supported at
the infrastructure level by a dynamic network infrastructure
with self-configuration capabilities at execution time based
on interoperable communication standards. Moreover, “things”
have physical and virtual identities, attributes, and functions;
are integrated within a network; and often communicating with
data users and the environment. In most cases, sensors are seen
as “things” dispersed in the environment, which send data via
the network that are received and analyzed in real time.

There are several applications of IoT that can be critical
and should be closelly monitored and verified, such as eHealth
sensors that monitor vital signs of patients and administer
doses of medicament on demand [2]; sensors that measure soil
moisture and control soil irrigation in agricultural applications
[3]; sensors that warn about unauthorized presence of person-
nel in restricted areas and trigger invasion alarms [4]. Any of
these applications can be potentially harmful if one or more

sensors are compromised, and this problem becomes harder
to manage as the number of sensors increases to be managed
increase.

In this context, security is an imperative subject on the
Internet of Things scenario. Nonetheless, ensuring the security
of sensors and the data the generate is not a trivial task
since IoT sensors are usually connected to untrusted networks.
Hence, several studies have been focused on the development
of Intrusion Detection Systems (IDS), which analyzes the
behavior of attacks, to avoid similar future attacks. Most
IDS can only detect known attacks, giving space to anomaly
detection techniques, which have been used together to IDS to
improve the security of IoT devices [5] [6].

To address this limitation, several studies have used ma-
chine learning algorithms to classify, quantify, and assess IoT
sensors that search for anomalies [7] [8] [9]. They consist
of clustering algorithms that aim to partition observations in
groups where each observation belongs to the nearest group
average. However, some of these algorithms have limitations
concerning execution time or accuracy when using large
amounts of data.

Our proposal is to use machine learning algorithms [10] to
analyze security issues in data sent by sensors in an IoT envi-
ronment. Previous work already adopted similar algorithms to
address such matters, as in Bovet et.al and Shahriar et. al [11]
[12]. However, most of them use machine learning algorithms
on static data series. We propose evaluating a time series,
wherein freshly generated data is sent in time intervals and
analyzed in real time. Furthermore, no previous studies have
investigated the trade-off between performance and accuracy
for anomaly detection algorithms on IoT sensor data with the
intention of showing which option is the best to improve such
trade-off.

The applied scenario of this study is the analysis of data
generated by sensors allocated to a grain storage. Five widely-
used anomaly detection algorithms are evaluated. They search
for anomalous values for the monitored metrics, and they are
evaluated in terms of time to perform the analysis and the
accuracy of the result in terms of false-positives.
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background about Internet of Things. In Section 3, anomaly
detection algorithms are listed and discussed. In Section 4 we
present a test scenario, experiments, and discussion about the
results. Section 5 contains conclusions and future work.

II. INTERNET OF THINGS

The Internet evolved to be used is different contexts, as its
capacity grew. Early uses of the Internet were in the form with
a huge computer network with little attention to its users and
applications. After that, it the raise of Web 2.0, the focus was
on the people using the network. Recently, the focus started to
change to support a network of interconnected things, where
“things” can be computers or absolutely everything that is net-
worked with the rest of the “things” in the world. The increased
accessibility, the reduction in cost of network transmission
media, and the relative ease of connection of devices has driven
a plenty of organizations such as governments, businesses, and
individuals to collect data from IoT devices.

Figure 1 shows a typical Internet of Things ecosystem. In
Figure 1, we highlight the IoT environment which has three
main components, namely, sensors, Internet and, analysis. Any
object that can send data over the network can be considered
a sensor. Due to the exponential growth in the number of such
sensors, there is a significant amount of data traveling via
wireless networks, and it requires suitable types of networks
and offloading techniques to support such a demand without
causing overhead on network channels.

Figure 1. Interoperability among IoT components.

The analysis of data obtained from sensors is used to moni-
tor and manage both environments and situations. Moreover, it
generates runtime responses aiming to modify an environment
or situation in order to adapt it based on the application goal,
for example.

Currently, cloud services called AaaS (Analytics-as-a-
Service) [13] can handle a large volume of data due to the
elasticity capabilities, and generate responses quickly. How-
ever, there are several limitations inherent to the Internet of
Things due to overexposure of the sensors and data, ranging
from privacy issues to the sensor data change with the intention
to compromise the decision-making process on actuators on
IoT environment.

IoT provides suitable solutions to multiple contexts, such
as urban illumination, waste management, and eHealth. How-
ever, these solutions require robust security measures, such as

anomaly detection techniques, to maintain its trust, since IoT
sensors can be compromised to transmit altered data, which
could bring serious problems (e.g., compromised eHealth
sensors could send wrong patient’s glucose level to doctors,
leading wrong medication prescriptions). Consequently, vari-
ous algorithms are applied in order to detect sensors that may
have been compromised.

As these algorithms differ in terms of capability and
computing demand, in the next section we review anomaly
detection algorithms aiming to draw a coherent landscape in
this significant area.

III. ANOMALY DETECTION ALGORITHMS

Through advances in the area of data science, which allows
the creation of knowledge by the analysis of massive quantities
of data, datasets have been used to analyze phenomena, trends,
and even to make predictions related to several processes. In
this context, it is important to recognize data points whose
values deviate from the other observations in the sample.

Those abnormal instances are called outliers or anomalous
instances and can represent errors during the data collection
process or variations in the sample. Figure 2 shows an example
of data analysis, where outliers were found and highlighted.

Figure 2. Dataset presenting some outliers, which were detected and
highlighted.

According to the importance of anomaly detection on
datasets, several techniques have been developed, using tech-
nologies related to several areas, such as machine learning, to
provide efficient solutions based on outliers detection.

Those anomaly detection techniques can focus on different
aspects, such as type of variables (multivariate or univariate),
dimensions (spatial, temporal, or spatiotemporal), and type of
analysis (online, offline, or both). Regarding machine learning
techniques, they can be organized into 3 groups concerning to
the way it leads to the feedback in the analysis process:

• Supervised learning techniques that receives prede-
fined classes from the user (i.e., a finite training
set with the classification of each of its instances).
Thus, those techniques can organize the next instances
into the available classes taking into consideration
the original classification. This kind of technique is
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recommended to scenarios in which the user knows
how to classify the data correctly.

• Reinforcement learning techniques, in which the al-
gorithm automatically classifies the data, and the user
gives to it a feedback which is used by the algorithm
to learn how to increase its accuracy. These techniques
can be used when the user cannot previously organize
the data, but can reward or punish the algorithm based
on its actions.

• Unsupervised learning techniques that automatically
classifies the data without the user influence, taking
into consideration the similarity between the instances
in order to organize it into classes or groups (also
known as clusters). These techniques are useful in sce-
narios where users are not able to help the algorithm
in the classification process.

In order to refine our analysis, we focused only on un-
supervised learning techniques with support to multivariate
data analysis. Among the existing proposals, we focus on the
following:

• K-means: It is useful in several studies to detect
anomalies, grouping anomalous data on specific clus-
ters, separated from normal instances [14], [15].

• Isolation Forest: Basedon the principle that anomalies
occur in small number and are “distant” from normal
datapoints in the attributed space [16].

• K-means–: an enhanced version of K-means, with
more robustness. Developed for anomaly detection on
large datasets [17].

• LOF: Developed for detecting anomalies in large
databases. However, it has considerable computational
cost [18].

• Mahalanobis Distance: It is applied to detect anoma-
lies in different contexts, such as hyperspectral imag-
ing and LED packages [19], [20].

In the next subsections, we highlight each of the above
anomaly detection techniques.

A. K-means

K-means [21] is a non-supervised classification algorithm
that performs analyses and comparisons among numerical
values present in a data series. Such algorithm allows classifi-
cation into clusters, which consist of data classes with similar
characteristics. The number of classes that the algorithm can
find out over a pre-classification dataset consist of k.

To generate the classes and classify the occurrences of sim-
ilar data within each class, the algorithm makes a comparison
between each value and another instance through the Euclidean
distance. The way and the cost to calculate this distance
depends on the number of attributes provided by the data. As
the algorithm iterates, the value of each centroid is refined
by averaging the values of each attribute from each event
that belongs to this centroid. Thus, the algorithm generates
k centroid and places the datapoints according to its distance
from the centroid.

B. Isolation Forest

Isolation Forest [16] is a machine learning technique that
allows an analysis of linear time complexity and low memory
usage. This means that in the worst case, the time follows the
growth of data to be processed, and low memory usage also
impacts indirectly on performance. In our context, isolating
means separating an instance of the total of instances. If we
consider that an anomaly consists of an instance of different
behavior from the others, this is more susceptible to isolation.
Anomalies have two characteristics: they are the minority
within a data set and they have a value or attribute very
different from other normal instances. Based on this, Isolation
Forest creates random trees sub-sets of data, and anomalies are
isolated closer to the root, whereas normal points are separated
deeper in the tree.

Anomalies are more susceptible to isolation and therefore
have short path lengths. The number of partitions needed
to separate one point is equal to the path length from the
root node to the leaf node. The average size of paths of
anomaly and normal instances converge when the number of
trees increases. Since each partition is randomly generated,
individual trees are produced with different sets of partitions.
This shows that anomalies are having shorter run lengths than
normal instances. Therefore, for dimensional problems that
contain a large number of irrelevant attributes, Isolation Forest
can achieve great performance in detecting certain types of
anomalies.

C. K-Means–

K-means have been used in several studies to detect
anomalies. Nonetheless, this technique can be considered in-
sufficient to detect anomalies in some scenarios considering
its outliers detection sensitivity. This factor can influence
the final result negatively, since k-means can present some
limitations, especially in large datasets, which include failing
to detect all anomaly instances, presenting normal observations
as anomalies, or even recognizing outliers as normal instances.

Hence, Chawla and Gionis [17] introduced a new anomaly
detection method based on k-means, called k-means–. Since
one of the most known limitations of k-means is its sensitivity
to outliers (i.e., one outlier may cause significant changes in
the mean and in the standard deviation of the sample), the
authors designed such technique in order to define the number
of clusters in a unified way, simultaneously forming clusters
and tracking outliers aiming to avoid classification problems,
such as false-positives and false-negatives.

Moreover, k-means– presents more robustness than k-
means, which allows its usage on large datasets. In order to
validate the efficiency of its approach, the authors applied
it on a dataset with 5 decades of data related to hurricanes
occurred in the Atlantic Ocean. The results showed that k-
means– was more capable of detecting outliers in comparison
to the classical nearest-neighbor approach [17].

D. LOF

The Local Outlier Factor (LOF) is an algorithm that
analyzes the distance between a point and its nearest neighbors
(that is called local density). The parameter k defines the
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Figure 3. Accuracy results of the analyzed techniques. All algorithms, except K-means (whose results are shown on Figure 3(d)), were able to detect all
anomalous instances.

number of neighbors the algorithm will consider to evaluate
the density of an instance. Thus, the algorithm performance
decreases as the value of k neighbors to be considered in the
density calculation increases.

Furthermore, LOF can detect anomalies in an intelligent
way by calculating the density dynamically, i.e., the algorithm
analyzes the sample dynamically, so an instance that would be

considered an outlier in a dense dataset can also be considered
a normal instance within a sparse dataset. Thus, the algorithm
compares the density of different points, identifying regions
with similar densities on the sample, and separate the instances
which whose density has a deviation in comparison with the k-
th data points near from it, which are considered outliers [18].
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E. Mahalanobis Distance

The Mahalanobis Distance is a statistic metric created by
Mahalanobis [22] that calculates the distance between a point
and the centroid of a multivariate conjunct. Thus, it is possible
to analyze if an observation belongs to a distribution or not.
Differently from Euclidian distance, Mahalanobis Distance
takes into account the covariance matrix (based on the known
items of each class) in order to calculate the distance of the
analyzed point from the rest of the sample population and
classifies it into the group with the minimal distance.

In a multivariate analysis scenario, this measure does not
take into account the distance between an attribute by time,
but analyzes all variables at the same time, calculating the
correlation between them. This is very relevant since a data
point can be considered normal from the perspective of a single
variable, but can constitute a multivariate outlier.

In this section, we presented and discussed the algorithms
and techniques. In the next section, we perform experiments
aiming to compare and evaluate them in the context of anomaly
detection in IoT sensors.

IV. EXPERIMENTS

In order to examine the performance and accuracy of the
chosen anomaly detection techniques, we applied them to a
dataset with 4 attributes (temperature, humidity, atmospheric
pressure, and CO2 level) from a grain storage, collected
hourly during the first semester of 2016 (4368 measurements
in total). These attributes were chosen because they are the
most important for adequate storage of grains in silos. In
those scenarios, control such variables is an important task to
conserve the integrity of the grains (e.g., temperatures lower
than 15◦C can prevent the appearing of fungi and bacteria on
the grains) [23]. Moreover, one of those variables can influence
the others (e.g., humidity have a significant impact on the
temperature variation) [24]. In such dataset, there were 2 types
of anomalies:

• Isolated anomalies, that occurred in a single attribute
(this type appeared 3 times in each attribute).

• Anomalies that occurred in all attributes at the same
time (appeared one time during the measurements).

Regarding the implementation of the algorithms, in Isola-
tion Forest we set it to fully deterministic mode. To define
the number of clusters used by k-means and k-means–, we
applied the silhouette method, which suggested the use of 2
clusters. In order to refine the results of k-means, we also used
the parameters nstart = 100 and iter.max = 20. Moreover,
we implemented LOF using the parameter k = 1, which
sets the kth-distance to be used to calculate the LOFs. The
accuracy results of the algorithms are presented in Figure 3.
The only algorithm that was not able to detect all anomalies
was k-means (Figure 3 (d)), which, despite have found the
generalized anomaly, only found 6 out of 9 isolated anomaly
instances. All other algorithms were capable of detecting all
the anomaly instances.

The results showed that the majority of the evaluated
algorithms were able to detect univariate and multivariate
outliers (e.i., abnormal values on one attribute and abnormal

Table I. ELAPSED TIME BY THE ALGORITHMS ON THE ANALYSIS OF
THE DATASET.

Algorithm Elapsed Time
Isolation Forest 0.513s
Mahalanobis Distance 0.003s
K-means 0.429s
K-means– 1.802s
Local Outlier Factor (LOF) 10.574s

values on two or more attributes). In this sense, to define the
best algorithm to our case, we also analyzed the performance
of each one, since this can be determinant on the algorithm’s
efficiency in some scenarios.

Regarding performance, Mahalanobis Distance was the
best, with 0.426s of difference from the second place (k-
means). Those results can be a consequence of Mahalanobis
capability to search outliers considering all variables simul-
taneously (considering that all anomalies have a considerable
deviance of value from all other normal variables). Even k-
means– also having an approach the allows it to analyze the
dataset and classify the data within clusters simultaneously,
this algorithm was not able to finish the analysis process with
the same performance as Mahalanobis Distance.

The worst algorithm in terms of performance was LOF,
which took 10.574s to analyze the dataset. The LOF results
may have been caused by the method characteristics, where
the resulting values are difficult to interpret because there is
no clear rule to define an outlier. The information regarding
the algorithms performance is presented on Table I.

Figure 4. Performance and accuracy trade-off. Although Isolation Forest (1),
K-means– (4), and LOF (5) have obtained the maximum accuracy results,
Mahalanobis Distance (2) was the best algorithm to improve such trade-off.
K-means (3) showed the worst accuracy results.

Therefore, by comparing the algorithms regarding perfor-
mance and accuracy, we conclude that, for our case study
and dataset, Mahalanobis Distance presents the best trade-
off between performance and accuracy when compared to the
other algorithms. Such result can be seen in Figure 4.
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V. CONCLUSION AND FUTURE WORK

The increased utilization of Internet-connected sensors in
our daily lives has greatly facilitated our way of life. This
is occurring not only in everyday matters, such as a simple
check of the weather, but also on issues that affect the health,
production, locomotion, and many others that affect us directly
or indirectly. On health issues, we can now take advantage
of wearable sensors, which can monitor vital signs, send
alerts, and even administer medications. In crop production,
sensors can control several important environmental metrics
for the development of plants, such as temperature and light,
acting on actuators that can regulate these metrics to such an
environment. In either case, compromised sensors can send
wrong values, impacting in decision-making processes of the
Internet of Things ecosystem.

Therefore, algorithms that can analyze the information sent
by a set of sensors in real time and accurately become relevant.
The main problem of these algorithms is the trade-off between
performance and accuracy. In this context, algorithms that are
quick to detect anomalies may not always provide the best
accuracy. Algorithms that have an excellent accuracy may be
too slow to detect anomalies in real time. Therefore, this paper
evaluates the trade-off between performance and accuracy of
such algorithms, through data evaluation coming from real
sensors in a grain storage scenario.

Results showed that Mahalanobis Distance was the best
algorithm in both aspects evaluated, namely, performance
and accuracy, being able to detect all outliers in a fraction
of second, what demonstrates its efficiency in multivariate
analysis. As a future work, we intend to isolate anomalous
sensor by consensus algorithm so that these do not influence
the decisions of the actuators that maintain a satisfactory
environment for the grain storage.
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