
The Impact of Parallel Programming Interfaces on
the Aging of a Multicore Embedded Processor

Angelo Nery Crestani Vieira∗, Paulo Silas Severo de Souza∗, Wagner dos Santos Marques∗,
Marcelo da Silva Conterato∗, Tiago Coelho Ferreto∗, Marcelo Caggiani Luizelli†,

Arthur Francisco Lorenzon†, Antonio Carlos S. Beck Filho‡, Fábio Diniz Rossi§, and Jorji Nonaka¶
∗Pontifical Catholic University of Rio Grande do Sul, Brazil

†Federal University of Pampa, Brazil
‡Federal University of Rio Grande do Sul, Brazil

§Federal Institute of Education, Science and Technology Farroupilha, Brazil
¶RIKEN Center for Computational Science, Japan

E-mail: fabio.rossi@iffarroupilha.edu.br

Abstract—In order to meet the increasing performance de-
mand of applications, the amount of cores in a single chip package
has been increasing. However, the heat has been rising at a higher
scale, which accelerates the aging process in modern processors.
Therefore, wisely balancing the use of resources is important
to extend its longevity. Frequency performance stagnates after
a certain amount of concurrent threads starts executing. In
such cases, the only result is a temperature rise that directly
influences the aging process, reducing the processor lifetime. This
unbalance between threads can be originated from many factors,
which includes the way threads communicate and synchronize.
Considering that those characteristics are related to the Parallel
Programming Interface (PPI) used to parallelize the application,
this work proposes to evaluate three widely used PPIs executing
on an embedded multicore. We show that, depending on the
characteristic of the application, by only switching from one PPI
to another, it is possible to reduce the effects of aging. For that,
we have developed a model based on the Arrhenius equation. We
show that OpenMP has a lower impact on the processor aging
for memory-bound applications: up to 38% and 68% lower than
PThreads and MPI, respectively. On the other hand, PThreads
presents the lowest impact on the processor aging for CPU-bound
applications.
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I. INTRODUCTION

The number of cores in a single chip has been rising
to meet the performance demands of applications that run
on high-end embedded systems (e.g., facial identification,
object tracking, human body interaction, and neural networks).
However, with the end of Dennard scaling [1], the power
dissipated per area increases at each new processor generation.
Therefore, heat dissipation has become even more relevant.
Besides the well-known issues (e.g., cooling), it also acceler-
ates the aging process of the hardware elements, reducing their
lifetime. Aging is tremendously impacted by higher working
temperatures. For example, even a small increase of 10-15◦C
in the working temperature may decrease the chip’s lifespan
by half [2]. On top of that, processor intensive applications
may produce hotspots that will stimulate even more the
aging process. Considering that aging makes systems more
susceptible to several sorts of failures (e.g., electromigration,
dielectric breakdown, and stress migration) [3], managing die

temperature and keeping it as low as possible is key to reduce
these issues.

At the architectural level, when running a parallel appli-
cation, performance tends to increase. However, the processor
temperature increases proportionally to the number of extra
threads, since additional hardware components are activated
(e.g., cores and caches). Therefore, there is a trade-off between
performance gains and temperature rise, so to improve the pro-
cessor lifetime it is necessary to consider the aging acceleration
factor and how long the processor performs a given application,
not one or another individually.

However, both of them are directly associated with the
amount of threads executing, how they are distributed over
the cores and the way they communicate and synchronize
[4]. All these characteristics are directly related to the Parallel
Programming Interface (PPI) used to parallelize the applica-
tion. PPIs are used to speed up the development of parallel
applications and make it as transparent as possible to the
programmer, being OpenMP - Open Multi-Processing [5],
PThreads - POSIX Threads [6], or MPI - Message Passing
Interface [7] the most popular ones. Each one of these has
different characteristics concerning the management (i.e., cre-
ation and finalization of threads/processes), workload distri-
bution, communication, and synchronization. Therefore, each
PPI will influence the application performance and processor
temperature in different ways, which will affect the processor
aging.

Based on the above, this paper assess how the aforemen-
tioned PPIs impacts aging, with the following contributions:
(i) evaluate a mathematical model that estimates the processor
degradation factor based on the heat wasted and the execution
time of the application; (ii) perform an extensive analysis of
several algorithms implemented using three different parallel
programming interfaces widely used nowadays (PThreads,
OpenMP, and MPI); and (iii) demonstrate that, depending on
the characteristic of the application (i.e. CPU- or Memory-
bound), it is possible to reduce the effects of aging by only
switching from one PPI to another. The remainder of the paper
is organized as follows. Section II discusses the related work
and states our work. Section III presents and discusses the
proposed model to estimate processor aging. The evaluation
methodology and testbed is described in Section IV, while
Section V presents and discusses the results. Finally, Section

978-1-7281-0397-6/19/$31.00 ©2019 IEEE 
Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on December 25,2023 at 00:31:32 UTC from IEEE Xplore.  Restrictions apply. 



VI draws the final considerations and future work.

II. RELATED WORK

a) Processor aging: M. Namaki-Shoushtari et al. [8]
present ARGO, an aging-aware method uniformly allocate
variables in the register files (RFs) of GPGPUs to disperse
the heat dissipation more uniformly, impacting temperature
and decreasing hardware aging. A. Bartolini et al. [9] propose
a distributed and self-calibrating model, which uses thermal
control on multicore architectures. The model was improved
in [10] to choose the fitting processor working frequency to de-
crease the temperature. F. Reghenzani et al. [11] show a data-
driven controller based on a model to optimize the resource
allocation under specific thermal constraints. D. Zoni and W.
Fornaciari [12] evaluates a power-gating approach to improve
the hardware lifetime in network-on-chip buffers. A. Marongiu
et al. [13] propose a workload allocation approach for reducing
the processor aging when running OpenMP applications. F.
Mulas et al. [14] investigates a thermal balancing scheme
that employs task migration to control the cores’ temperatures
for MPSoCs architectures. T. Chantem et al. [15] perform a
solution for allocating and scheduling tasks on an MPSoC
architecture to overcome the processor aging. S. Corbetta and
W. Bornaciari [16] explore the impact of different instruction
allocation policies on the processor aging.

b) Comparison between parallel programming interfaces:
Many works have evaluated the performance improvements
and energy consumption considering different PPIs. Mallón
et al. [17] evaluate the performance of MPI, UPC (Unified
Parallel C), and OpenMP in multicore architectures through a
subset of the NAS Parallel Benchmark. Balladini et al. [18]
analyze the influence of OpenMP and MPI on the energy
consumption and the behavior of systems at different clock
frequencies of CPUs. Hua and Yang [19] present a perfor-
mance analysis of OpenMP and MPI. Fellows et al. [20]
compare the performance and energy consumption of OpenMP
and Intel TBB (Threading Building Blocks) on embedded
processors. Lorenzon, et al. [21], [22] show the impact of
OpenMP applications on the static power consumption of the
processor and memory system. Wang et al. [23] investigate
the energy consumption of parallel applications implemented
with OpenMP on the Intel Haswell processor microarchitec-
ture. Salehian et al. [24] present a performance evaluation of
OpenMP, Intel Cilk Plus, and C++11 on different multicore
systems. Lima et al. [25] explore the performance and energy
consumption of the OpenMP runtime system when executing
on a non-uniform memory access platform.

c) Our Contributions: While the works discussed in item
a propose solutions to reduce processor aging, works in item
b evaluate the impact of PPIs on performance and energy
only. Therefore, this is the first work that assess the impact of
different PPIs on aging, evaluating different algorithms using
an embedded platform. Therefore, our results will serve as a
guide to decide what and when use each parallel programming
interface when the aging is the metric of interest.

III. AGING MODELING

We estimate the processor aging using the Arrhenius equa-
tion [26], which determines how the increase in temperature
stimulates the hardware component aging. Such equation ap-
plies: a regular processor temperature denoted in Kelvin (Tu);

a Boltzmann’s constant k that describes the relation between
absolute temperature and the kinetic power included in each
molecule of an ideal gas [27]; the minimum amount of power
needed to start a chemical reaction (Ea) [28]; and the natural
logarithms base (e). Based on the above, the aging acceleration
factor per second (Af ) at a current temperature (Tt denoted in
Kelvin) is provided, as shown in Equation 1.

Af = e(
Ea
k ∗{ 1

Tu
− 1

Tt
}) (1)

We used the lm_sensors (Linux monitoring sensors) ap-
plication to get the current processor temperature per second
directly from the hardware counters. The total processor aging
can be represented as an integral of the Af over the whole
application execution time (Et), as described in Equation 2.

ProcAging =

∫ Et

i=0

Af (2)

Even thought the model above does not define a raw
number for the circuit degradation (e.g. number of years before
wear out), it gives a degradation factor over time, which can
be efficiently used to compare aging between different setups.

IV. METHODOLOGY

Parallel programming interfaces: In our study, we con-
sider the three parallel programming interfaces widely used
nowadays: OpenMP, POSIX Threads, and MPI. The first two
are used for shared memory programming, while the latter
considers distributed memory programming (however, when
executed over multicore architectures, MPI performs a bypass
in local memory [29] to lower latency). OpenMP is a multi-
platform API for shared-memory parallel programming in
C/C++ and Fortran. It uses a set of compiler directives, library
functions, and environment variables. OpenMP applies the
Fork-Join model, where there is a main flow of execution.
When the application needs to parallelize the code, new
threads are created by Fork to distribute the work, forming
parallel regions. When the processing of a parallel region ends,
the threads are synchronized via Join [5]. POSIX Threads
(PThreads) is a standard API for multi-threading programming
in C/C++. The functions of the PThreads library allow fine
adjustment concerning the grain size of the workload. The pro-
grammer explicitly defines the creation/termination of threads,
the distribution of workload, and the control of execution [6].
MPI (Message Passing Interface) provides functions for C,
C++, and subroutines for Fortran-77 and Fortran-95. An MPI
program is defined as a group of processes that can exchange
messages among them [7]. MPI is similar to PThreads con-
cerning the obligation to explicitly exploit the parallelism. The
programmer must use send and receive operations to define the
cooperation among processes.

Benchmarks: Nine parallel applications from assorted
benchmark suites and domains were chosen: DFT: Discrete
Fourier Transform turns a finite sequence of equally-spaced
instances of a function into a same-length sequence of equally-
spaced instances. PI: Calculation of the Pi Number using
infinite series. GaS: Gauss-Seidel is an iterative method for
solving systems of linear equations. MM: Matrix Multiplica-
tion multiplies two square matrices (A and B) and stores the
result in matrix C. TR: Turing Ring describes a space system
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TABLE I: Embedded platform specifications.

Component Specification
CPU 4 ARM Cortex-A53, 1.2GHz

Memory (RAM) 1GB LPDDR2 SDRAM
Power Supply +5V Micro USB

that predators and prey interact in one location. OE: Odd-Even
is a sorting algorithm, based on bubble sort that compares pairs
of elements. HS: Harmonic Sum consists of a finite series
that calculates the sum of arbitrary precision after the decimal
point. JC: Jacobi determines the solution of linear systems
involving a large percentage of zero coefficients. GS: Gram-
Schmidt is a method for orthonormalizing a set of vectors in
an inner product space. The applications were classified into
three groups: CPU-Bound (DFT, PI, and GaS), balanced use of
the resources (MM and TR), and memory-bound (OE, HS, JC,
and GS). In order to classify these applications, Performance
Application Programming Interface (PAPI [30]) was used to
collect and analyze data related to the number of cycles,
executed instructions, and the number of memory accesses
(hits and misses in the L1 and L2 caches, and RAM).

Benchmark Implementation: The applications were im-
plemented using the C language. Since the strategy used to par-
allelize the application influence its behavior during execution,
we have followed the guidelines indicated by [5], [6], [7], and
[31]. Thus, the OpenMP implementations were parallelized
using parallel loops, splitting the number of loops iterations
(for) between the threads. As the authors discuss in [5], this
approach is ideal for applications that compute on uni and bi-
dimensional structures, which is the case. On the other hand, as
indicated by [6], [7], and [31], the approach using parallel tasks
was utilized in PThreads and MPI implementations. In such
cases, the loop iterations were distributed based on the best
workload balancing between threads/processes. Moreover, the
communication between MPI processes was implemented by
using non-blocking operations, to provide better performance,
as showed in [29].

Execution Environment: The experiments were per-
formed on a multicore embedded processor, as shown in Table
I. We used the Operating System Linux Ubuntu, Kernel v.
4.4.38-v7+armv7l and the compiler GCC5.4.0. The following
distributions were used: OpenMP 4.0, PThreads/POSIX.12008,
and OpenMPI 1.6. The benchmarks were split into 2, 4, and
8 threads/processes. Each configuration (algorithm, number of
threads, and parallel programming interface) was executed ten
times, with a standard deviation in both power consumption
and performance of less than 0.5%. All algorithms had large
inputs, which allowed the execution time to be as long as
possible. Both the hardware and the operating system were
configured to be in the same state at the beginning of each
test.

V. RESULTS AND DISCUSSION

Figure 1 presents the results for each application from the
benchmark set. Each chart shows the processor aging in raw
numbers (given by Equation 2) and the number of threads (x-
axis), for each parallel programming interface. The sub-figures
are organized in order, from the CPU-bound applications to the
Memory-bound ones. Furthermore, Table II shows the results
for the execution time and processor temperature (geometric

TABLE II: Results for the geometric mean of each benchmark
class.

#Threads Temperature (oC) Execution Time (s) Processor Aging
PT OMP MPI PT OMP MPI PT OMP MPI

CPU-B
2 56 59 61 533 566 543 9603 13018 14665
4 68 68 69 249 290 306 11223 13050 14700
8 71 70 69 195 233 295 10778 11923 14178

Balanced
2 59 60 60 474 464 512 10910 11611 12806
4 68 68 69 240 254 288 10816 11447 13859
8 66 66 65 284 316 378 11085 12361 13638

Mem-b
2 58 59 61 277 233 423 5832 5374 11519
4 65 65 66 176 142 341 6336 5128 13331
8 65 65 64 209 130 443 7541 4680 14642

mean for each benchmark class) for each PPI and number of
threads.

Initially, we discuss the CPU-bound applications (DFT,
PI, and GaS – Figure 1), in which PThreads presented the
best results regardless of the number of threads. Although
these applications are processor intensive and do not present
higher communication demands, the overhead of managing the
threads and the workload distribution in OpenMP was higher
than the gains achieved by the parallelization [32]. In the
same way, the large difference between PThreads to MPI is
due to the overhead for creating the MPI processes and then
performing send/receive operations. Moreover, because of the
specific characteristics of the applications, it was not possible
to implement the MPI versions using non-blocking messages,
even though they do not have high communication demands,
increasing even more the difference between PThreads and
MPI. As one can observe in Table II, the best configuration is
PThreads with only two threads, that is, the parallel program-
ming interface and the number of threads that provides the
lowest processor aging. Comparing to the best result achieved
by OpenMP (8 threads) and MPI (8 threads), it represents a
reduction of 20% and 32% in the processor aging, respectively.

For the applications with balanced use of resources (MM
and TR), PThreads and OpenMP presented a similar impact on
the processor aging. In this case, the best configuration found
was with PThreads running 4 threads (Table II): it is only 5%
and 15% better than the best result for OpenMP (4 threads)
and MPI (2 threads). For this specific comparison between
PThreads and OpenMP, the programmer may take into account
secondary factors during the development process, such as ease
of programmability, code reuse, and so on. However, the same
is not true for the memory-bound applications (OE, HS, JC,
and GS). In this case, OpenMP presented the lowest processor
aging, regardless of the number of threads. Comparing to
PThreads, the difference is related to the impact of context
switching imposed by the use of a mutex to ensure synchro-
nization, since the performance of this mechanism depends on
the architecture and Operating System used [33]. Due to this
overhead, PThreads was 38% slower than OpenMP for the
memory-bound applications (on the average, for 8 threads),
which impacted the processor aging.

Finally, analyzing the whole scenario for each benchmark
class and the geometric mean of the entire benchmark set,
Figure 2 shows the results of the processor aging of OpenMP
and MPI normalized to PThreads (represented by the black
line). One can observe that PThreads showed to be the best
parallel programming interface for CPU-bound applications re-
gardless of the number of Threads. In the most significant case
(2 threads), it presented an impact on the aging process which
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Fig. 1: Aging evaluations performed with three parallel programming interfaces using test sets with 2, 4, and 8 threads. The
lower the value, the lower the impact on the lifetime of the processor.
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Fig. 2: Processor aging of OpenMP and MPI normalized
to Pthreads (black line) for the geometric mean of each
benchmark class and the entire benchmark set.

is 26% lower than OpenMP and 35% lower than MPI. As
for applications that have balanced use of resources, PThreads
and OpenMP presented similar results, with a difference of less
than 5% between them. On the other hand, as the application
has more accesses to memory due to communication and
the mutex is more used to perform synchronization between
threads in PThreads, OpenMP presented the best results for the
memory-bound applications regardless the number of threads.
In the most significant case, it has an impact on the aging
process 38% lower than PThreads (8 threads) and 68% lower
than MPI (8 threads/processes). When considering the geo-
metric mean of the entire benchmark set, PThreads showed
better results for 2 threads while OpenMP presented better

results for 8 threads. This behavior happens because the greater
the number of threads, the more synchronization is performed,
and, as previously discussed, synchronization through mutex
limited the performance gains of PThreads.

VI. CONCLUSION AND FUTURE WORK

This work evaluated the impact of three widely used par-
allel programming interfaces (PThreads, OpenMP, and MPI)
on the aging process of a real embedded multicore processor.
Through an extensive set of executions, we have shown that,
depending on the behavior of the application, the use of a
specific parallel programming interface may present a higher
or lower impact on the processor aging. For example, by using
OpenMP for the execution of memory-bound applications,
the processor ages 38% and 68% lower than PThreads and
MPI, respectively. However, when CPU-bound applications are
considered, PThreads has a lower impact on the processor
aging than OpenMP (up to 26%) and MPI (up to 35%).
As future work, we will consider heterogeneous architectures
(e.g., system on chips) and expand our benchmark set to
cover a large range of application behaviors and consider other
factors, such as instruction-level parallelism and applications
that are more control or data flow oriented.
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