
Detecting abnormal sensors via machine learning: An IoT farming
WSN-based architecture case study

Paulo Silas Severo de Souza a,⇑, Felipe Pfeifer Rubin a, Rumenigue Hohemberger c,
Tiago Coelho Ferreto a, Arthur Francisco Lorenzon b, Marcelo Caggiani Luizelli b, Fábio Diniz Rossi c

a Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
b Federal University of Pampa, Alegrete, Brazil
c Federal Institute Farroupilha, Alegrete, Brazil

a r t i c l e i n f o

Article history:
Received 23 January 2020
Received in revised form 21 May 2020
Accepted 25 May 2020
Available online 20 June 2020

Keywords:
Anomaly detection algorithms
Outlier detection
Wireless sensor network

a b s t r a c t

Precision Agriculture is a broad, systemic, and multidisciplinary subject, dealing with an integrated infor-
mation and technology management system, based on the concepts that the variability of space and time
influence crop yields. Precision farming aims at more comprehensive management of the agricultural
production system as a whole. It uses a set of tools, instruments, and sensors to measure or detect param-
eters or targets of interest in the agroecosystem. Sensors are distributed in the environment and are usu-
ally communicated through a Wireless Sensor Network (WSN). Due to this dispersion of the sensors,
errors could occur in Byzantine form or could be caused by safety factors, which can lead to a misinter-
pretation by the system of data analysis and actuation over the environment. Anomaly detection algo-
rithms can detect such problem sensors by allowing them to be replaced, or the wrong data is
ignored. Therefore, this work presents a reference architecture and a heuristic algorithm that aid the deci-
sion of which anomaly detection to use based on the demands of agricultural environments. We per-
formed a preliminary evaluation, analyzing different anomaly detection algorithms regarding
execution time, accuracy, and scalability metrics. Results show that the decision-making supported by
the proposed architecture reduces edge devices’ power consumption by 18.59% while minimizing the
device’s temperature in up to 15.94% depending on the application workload and edge device
characteristics.

� 2020 Elsevier Ltd. All rights reserved.

1. Introduction

The current moment of agriculture demands fast, accurate
information that uses real and reliable references. However, these
data are not always easily accessible, and for this arise technologies
that transform the properties of the environment into physical
quantities, and can transmit them in the form of information useful
to the producer. One such device is precision farming sensors,
devices capable of detecting, reading, and recording a series of
changes that can quickly be translated by people or computers [1].

Wireless Sensor Networks (WSNs) is a technology that allows
practicing Precision Agriculture (PA) with low costs. Before PA,
farmers were only able to make use of imagery or other map-
based systems to precisely target their growing areas. PA offers
the benefit of real-time feedback through a variety of variables of
rural property and crops practiced. Thus, PA gives detailed infor-

mation, not only on the size of the planted area monitored, but also
on the applied amounts of fertilizer, water, and so on [2].

Based on the above, it is possible to identify and monitor from a
plant to an entire area of hundreds of square meters. In this way,
data collection, monitoring, and application of crop inputs, result
in lower costs and higher yields while lowering the effects on the
environment. The WSN used in agriculture is very similar to those
used in industrial controls. The required components of a WSN
ecosystem are a central control unit with a user interface, power
elements, communication gateways, router and, most importantly,
sensors.

However, since these sensors are sparsely scattered around the
environment, they may suffer some Byzantine failure and send
erroneous values that can directly influence production [3] [4]. In
soil moisture control environments, the water blade can be
changed; in temperature control environments, the environment’s
temperature can be set to a degree that is not ideal. If any of these
errors occur, all products can be lost.

https://doi.org/10.1016/j.measurement.2020.108042
0263-2241/� 2020 Elsevier Ltd. All rights reserved.

⇑ Corresponding author.
E-mail address: paulo.severo@edu.pucrs.br (P.S.S. de Souza).

Measurement 164 (2020) 108042

Contents lists available at ScienceDirect

Measurement

journal homepage: www.elsevier .com/locate /measurement

http://crossmark.crossref.org/dialog/?doi=10.1016/j.measurement.2020.108042&domain=pdf
https://doi.org/10.1016/j.measurement.2020.108042
mailto:paulo.severo@edu.pucrs.br
https://doi.org/10.1016/j.measurement.2020.108042
http://www.sciencedirect.com/science/journal/02632241
http://www.elsevier.com/locate/measurement


In order to detect these abnormal behaviors, anomaly detection
algorithms based on machine learning techniques can be used for
identifying failed sensors [5]. Through the use of these algorithms,
a data analysis service can discard the data gathered from faulty
sensors and also mark them for further analysis and replacement
[6]. Although several of these algorithms are proposed in the liter-
ature, selecting which to use depends on the data to be processed
[7].

Regardless of the nature of the data coming from a WSN in an
agricultural environment, the computational architecture is very
homogeneous. In general, only one sensor’s data is sent during a
certain period, allowing us to evaluate several algorithms on the
same agronomic data set and to infer a better algorithm for detect-
ing anomalies for the most diverse applications which exhibit sim-
ilar behavior. Accordingly, we propose a conceptual architecture
for evaluating, selecting, and tuning anomaly detection algorithms
based on the varied demands of agricultural IoT applications.

The rest of the article is presented as follows. Section 2 presents
a description of the problem solved in this paper. Section 3
describes an architecture that evaluates and selects the anomaly
detection algorithms that deliver the best performance based on
specific demands of agricultural IoT applications. Section 4 states
the test scenarios, results achieved, and discussion of results. Sec-
tion 5 presents the related work. Section 6 provides our conclu-
sions and directions for future work.

2. Related work

Ukil et al. [8] present challenges and the relevance of anomaly
detection techniques in several IoT health-care scenarios. The
authors argue that anomaly detection plays an important role in
IoT health-care scenarios. Abnormal data coming from compro-
mised sensors could heavily affect the effectiveness of health-
care IoT systems or even put its users lives in danger.

Narayanan, Mittal, and Joshi [9] developed OBDSecure Alert, an
anomaly detection mechanism that detects abnormal activities in
new and ’on-road’ vehicles. The data collected from different vehi-
cle components is converted into a sequence of observation vec-
tors. Every time a new observation is available, a sliding window
containing previous observations moves, and the posterior proba-
bility of the new observation sequence is determined. If the esti-
mated probability is below a threshold, the observation is
perceived as an anomalous state.

On Trilles et al. [10], an environmental anomaly detection sys-
tem is proposed. The system consists of three layers: content, ser-
vices, and application. The content layer consists of multiple field
sensors that are used to obtain air quality data. The sensors’ data
are sent to the services layer where anomalies may be detected
separately on each data stream using the CUSUM algorithm. The
application layer provides a web interface were each sensor status
is displayed along with any anomalous warning.

Due to the popularization of areas such as machine learning,
several algorithms to detect anomalous sensors data have been
proposed. However, choosing the wrong algorithm may delay or
even compromise the detection process. Some studies also com-
pare anomaly detection algorithms [11] [12]. However, their anal-
ysis does not cover important aspects such as the impact of
running anomaly detection algorithms in edge devices regarding
temperature and power consumption. Both of which are relevant
since edge devices usually operate in strict conditions.

This work complements these related studies as it provides a
reference architecture for evaluating and refining the performance
of anomaly detection algorithms according to the needs of agricul-
tural IoT applications. Besides, our proposal has a generalist design

which allows the addition of anomaly detection algorithms with
minimum effort.

3. Problem formulation

The massive growth of devices available in the consumer mar-
ket capable of network communications has brought about the
Internet of Things (IoT). The Internet of Things regards any object
(thing) which can interact with another through compatible net-
working capabilities. This interaction is one of the pillars of the
IoT realization [13]. Through this communication medium, differ-
ent devices are able to generate and exchange data that they would
not be able to otherwise.

IoT devices are designed for specific goals to reduce manufac-
turing costs, energy requirements, and others, in contrast to
general-purpose solutions. Due to such a particular design, these
devices have particular constraints applied to their resources.

Common IoT solutions for agriculture such as livestock moni-
toring and soil analysis, harvest data from sensors dispersed in
the environment, relaying the obtained information to another
device or cloud infrastructure. This data must be consistent, cor-
rect, and nonetheless informative, otherwise harvesting it would
be meaningless.

A possible approach for data validation is sending it to cloud
servers as they are capable of much more processing power, albeit
transmission latency might rise as problem [14]. On the other
hand, processing all the obtained data on an IoT device using com-
mon filtering methods might not only be unfeasible due to limited
resources but also interfere with the device’s main task.

Considering this scenario, in order to properly validate the
obtained data, more advanced methods must be used. Anomaly
detection algorithms are able to detect anomalous behavior on
data sets by applying different machine learning and pattern
matching techniques.

A piece of data is considered to be anomalous when its behavior
differs from others, i.e., commonly observed patterns are not pre-
sent in it [15]. These anomalies must be removed from the data
set they reside, otherwise any attempt to analyze the information
within such set would be affected.

An important consideration that should be taken before
employing anomaly detection algorithms is to have a deep under-
standing of the IoT system it will be employed on. Most of these
algorithms were not created specifically for the IoT, but for cloud
computing, whereas vast amounts of resources can be provided.
Thus, the selected anomaly detection algorithm must be cable of
being implemented and executed on a highly constrained device.

A WSNmaintains vast amounts of sensors connected, usually to
a central server, via a wireless communication channel. Due to var-
ious causes, which may be environmental, electrical, or even sabo-
tage, sensors can send erroneous values to the management
system, and thereby affect decision making over the entire
environment.

In this work, we consider a set of sensors S ¼ fsi : i ¼ 1; . . . ;ng
where the distribution of the measurements is homogeneous (all
of them performed at the same time). Based on this, all sensors
are synchronized, and at each new measurement time interval of
t, each sensor measures a characteristic vector xit from the
environment.

Each of these vectors of environmental characteristics present
measurement values vecixj, where xit ¼ fvecixj : j ¼ 1; . . . ; rg and

xit 2 Rr . After a set of moments t with several measurement sm,
each of the sensors si has already collected a set of characteristics
of the environment Di ¼ fxit : t ¼ 1; . . . ; smg.

Anomaly detection techniques intend to detect a sensor pre-
senting anomalous measurements. In other words, sensors pre-

2 P.S.S. de Souza et al. /Measurement 164 (2020) 108042



senting a value or subset of measured values that are inconsistent
with the rest of the data set. Therefore, we intend to find an
anomalous measurement am � Di within an entire set of measure-
ments D ¼ [i¼1;...;nDi.

4. Proposed architecture

Due to the granularity of data generated by agricultural IoT
applications, a wide variety of anomaly detection algorithms can
be used to perform pre-processing.

While many algorithms employ similar machine learning tech-
niques, the choice must be based on how the data is organized in
terms of variables (multivariate or univariate), analysis model (on-
line, offline, or both) and dimensionality (spatial, temporal or spa-
tiotemporal). Besides, nowadays, there are several classes of
anomaly detection algorithms that implement different detection
strategies, and as a consequence, they may have different levels
of accuracy and resource usage.

Therefore, in this paper, we present an architecture that envi-
sions the diverse needs of agricultural IoT environments, and infer,
within a list of anomaly detection algorithms, the one that best sat-
isfies the requirements of each IoT application on the environment
in terms of power consumption, heat generated onto the embed-
ded device, accuracy, and execution time. Fig. 1 depicts the pro-
posed architecture.

Efficiently detecting abnormal behaviors of IoT applications on-
the-fly is not a trivial problem since these applications typically
present highly variable profiles. IoT applications’ behavior can
change dramatically throughout short periods and in different
ways, not only in volume but also regarding the content it holds.
Therefore, deciding which technique to use for processing data
from an IoT application should not be a permanent decision. Our
architecture seeks to ensure that data is processed efficiently
despite the highly variable nature of IoT applications.

Once measurements are received, our architecture consults the
Knowledge Base component, which is responsible for centralizing
the information regarding which algorithm leads to the best results
for processing the data of a given application. If this application
was not previously before, the sensor’s data is forwarded to the
Benchmark module, which evaluates a set of anomaly detection
algorithms to identify which approach achieves the finest results
in accordance with user-defined goals (e.g., energy efficiency or
accuracy).

Once the evaluation is over, the Benchmarking module updates
the Knowledge Base with the up-to-date information about the fit-
test algorithm for processing the IoT application’s data. After, the
Anomaly Detection module is triggered, and the resulting analysis
is returned as the final product of our architecture.

To ensure the Knowledge Base stays up-to-date regarding
which algorithm delivers the best results while detecting abnormal
behavior for applications, all evaluations carried by the Benchmark
module hold an a attribute that represents its expiration date.
From time to time, when the decision-making is triggered, the
architecture checks if the period from the last time the benchmark-
ing for the application was triggered (which is represented by Db)
is higher than the a variable. As this expiration date is passed, the
Benchmark module is triggered once again to verify which algo-
rithm should be selected for processing data from the same appli-
cation in the future. Since benchmarking all anomaly detection
algorithms from the database may require a considerable amount
of processing, operators may choose for longer benchmarking
intervals by giving the a variable a higher value.

Given the strict amount of resources available for Edge devices
and the potential overhead of benchmarking anomaly detection
algorithms too often, our architecture introduces the Hyperparam-

eter Optimization module, which is called from time to time,
within each benchmarking execution. Through its use, the results
from anomaly detection algorithms can be enhanced at a lower
computation cost compared to picking other algorithms. However,
since the need for refining the parameters of each anomaly detec-
tion algorithmmay change regarding the IoT application workload,
we define a d variable (which is meant to get a value between 0 and
1) that dictates how often the Hyperparameter Optimization mod-
ule is called. More specifically, the architecture generates a random
value between 0 and 1 and only triggers the hyperparameter tun-
ing task if this value is higher than the d variable.

5. Evaluation and discussion

We did perform an empirical evaluation of the proposed archi-
tecture using six unsupervised anomaly detection algorithms with
support to the analysis of multivariate data sets [16]. An overview
of these algorithms is presented next and a summary categorizing
each algorithm is provided in Table 1. Details on the evaluation and
the data set are provided further.

Isolation Forest (iForest) [17]. Considers that anomalies are
less frequent than normal observations and present different val-
ues. Therefore, uses random trees to detect anomalies based on
the premise that after constructing isolation trees for a given data
set, anomalies are isolated closer to the root of the tree while nor-
mal points are isolated in the further nodes.

K-Nearest Neighbors (kNN) [18]. Computes for each point of a

data set the distance from its Kth nearest neighbor. Then, it selects
the top N points with the maximum distances as outliers. In order
to minimize the computational cost, a clustering algorithm is used
to partition in disjoint subsets the input data. Partitions that can-
not contain outliers are pruned. On the remaining partitions, out-
liers are computed.

Local Outlier Factor (LOF) [19]. Applies the concept of local
density to determine if a point is an outlier. The local density of
a point is calculated using the distance of its k-nearest neighbors.
A point is considered an outlier if, by comparison, it has a lower
density than its neighbors.

FindCBLOF [20]. Uses the Squeezer algorithm [21] on a given
data set to obtain a set of clusters. Using the obtained clusters
and two numerical parameters that are used to define a boundary,
two new sets of clusters are derived: LC (Large Clusters) and SC
(Small Clusters). For each record of the data set, if the record’s clus-
ter belongs to LC, the CBLOF value is calculated using the distance
between the record and its cluster, otherwise (its cluster belong to
SC) the distance is calculated using the minimal distance between
the record and a cluster belonging to LC.

The Histogram-Based Outlier Score (HBOS) [22]. Firstly cre-
ates a univariate histogram for each feature on the data set. The
histogram is created using different techniques considering the
type of data that was provided (categorical or numerical). Then it
normalizes the maximum height of each histogram to 1.0 which
ensures an equal weight of each feature to the outlier score. Finally,
the HBOS value (outlier score) of each instance of the data set is
calculated using a formula that may be interpreted as the inverse
of a discrete Naive Bayes probability model.

Angle-Based Outlier Detector (ABOD) [23]. Considers the vari-
ance of the angles between the different vectors of data objects as a
property to measure if an object is an outlier. If the spectrum of
observed angles for a point is broad, the point is surrounded by
others and is probably located inside a cluster. Otherwise, it is
believed to be outside of grouped sets of points, thus it is consid-
ered an outlier.

For our evaluation, we selected the ForestCover [24] data set,
which is a well-known multivariate data set that contains forest

P.S.S. de Souza et al. /Measurement 164 (2020) 108042 3



cover type from cartographic variables from four areas with mini-
mal human-caused disturbances of the Roosevelt National Forest
(United States). Its data is useful for researchers interested in
aspects such as biodiversity. Regarding this data set composition,
it contains 10 quantitative variables and 286048 data points, from
which 2747 (0:9%) are considered outliers (anomalies).

Our experimental edge computing platform comprises an
NVIDIA Jetson TX2 Developer Kit1, a power-efficient embedded AI
computing device suitable for several IoT applications such as robots
and drones [25]. Besides, Jetson TX2 has thermal and power con-
sumption sensors that make it suitable for our experimentation.
Table 2 presents the specifications of its hardware components.

This embedded platform comprises two processors (Denver 2
and Cortex-A57) and a Pascal GPU that hold a set of functionalities
to suit general-purpose tasks as well as to handle specific demands
such as deep learning applications. This architecture is depicted in
Fig. 2. The GPU shares the main memory with the other compo-
nents instead of having its own dedicated memory to keep the

Table 1
Details on time complexity and detection approach adopted by the anomaly detection
algorithms used in the preliminary evaluation of the proposed architecture.

Algorithm Type Time Complexity

Angle-Based Outlier Detector Probabilistic Oðn3Þ
Local Outlier Factor Proximity-Based Oðn2 � kÞ
K-Nearest Neighbors Proximity-Based Oðn2Þ

Isolation Forest Outlier Ensembles OðnÞ
Cluster Based Local Outlier Factor Proximity-Based OðnÞ
Histogram-Based Outlier Score Proximity-Based OðnÞ

Table 2
Technical specifications of the NVIDIA Jetson TX2 Developer Kit.

Components Specifications

Processors HMP Dual Core Denver 2/2MP L2
Quad Core ARM A57/2 MB L2

GPU NVIDIA PASCAL 256 CUDA Cores
Memory 8 GB 128bit LPDDR4 59.7 GB/s
Networking 1 Gigabit Ethernet, 802.11ac WLAN, Bluetooth
Operating System Linux Ubuntu 16.04.5 LTS (kernel v4.4.38-tegra)

Fig. 2. NVIDIA Jetson TX2 Architecture.

Fig. 1. Proposed architecture for detecting anomalous instances in WSN-based agriculture scenarios.

1 https://developer.nvidia.com/embedded/jetson-tx2>.

4 P.S.S. de Souza et al. /Measurement 164 (2020) 108042



architecture as lightweight as possible. Even with this constraint,
the NVIDIA Jetson TX2 is capable of leveraging the possibilities of
extending AI capabilities from the cloud to the edge.

The results presented in Fig. 3 are the average of 5 executions of
each algorithmwith a standard deviation lower than 3%. The assets
of our experimentation are available in our GitHub repository2. We
also monitored CPU and memory usage during the execution of the
algorithms. Besides, we used the Pearson Correlation Coefficient to
verify how resource usage impacted the performance, power con-
sumption, temperature and EDP. Table 3 summarizes the correla-
tions among each of these metrics.

5.1. Precision @ Rank N

We considered Precision at rank n (P@n) as one of the indicators
for accuracy. This metric is given by Eq. 1 and shows the number of
relevant instances among the retrieved results. The algorithm that
presented the best accuracy results was Isolation Forest, with
P@n ¼ 0:11. This result shows the effectiveness of Isolation Forest
in handling problems widely discussed in anomaly detection land-
scape such as Swamping and Masking effects [17]. Swamping con-
sists of identifying normal instances as anomalies. It usually occurs
when normal points are too close to the anomalous ones. Masking
refers to considering anomalous instances as normal data and
often occurs when there are too many anomalies.

Precision ¼ jRelevant Data \ Retrieved Dataj
jRetrieved Dataj ð1Þ

Unlike other algorithms, such as Local Outlier Factor that pre-
sented the worst accuracy result, (P@n ¼ 0:56), Isolation Forest
focuses on identifying anomalies rather than profiling normal
points. Since anomalies are less frequent and different from normal
observations, Isolation Forest randomly partitions data in decision
trees (called isolation trees), so anomalies can be identified as the
instances closer to the root of the tree since fewer splits are neces-
sary to isolate them. Fig. 3(a) presents the accuracy results of the
evaluated algorithms.

5.2. Area under the ROC curve

When evaluating the performance of classification models, ROC
curves can be used for plotting models’ TPRs (true positive rates)
against FPRs (false positive rates), at different thresholds. It pro-
vides an implicit view on the classification’s trade-off between sen-
sitivity and specificity.

Selecting a higher threshold increases specificity, leading to
fewer false positives; however, it also decreases sensitivity, result-
ing in fewer true positives. Lowering the threshold increases sensi-
tivity and also true positives, but reduces specificity, which
increases false positives. The Area under the ROC curve (AUC) mea-
sures the model’s classification performance across all possible
thresholds. The AUC can also be seen as the model’s probability
of classifying a random positive sample higher than a random neg-
ative sample.

The AUC measurement is extremely significant for comparing
the performance of different anomaly detection algorithms. Since
data gathered from different sensors might not contain any
anomalies, the higher an algorithm can rank these anomalies from
normal values, fewer false-positive detections will occur. This is
the reason iForest has the highest AUC among the selected algo-
rithms (Fig. 3(b). Instead of focusing on detecting normal instances,
iForest detects the anomalies.

5.3. Execution time

According to the results illustrated in Fig. 3(c), the algorithm
that presented the best execution time results was HBOS, being
able to detect the outliers in 3.83 s. As presented in Table 1, this
algorithm has a linear time complexity OðnÞ, which we believe
was the main reason for such a result.

It is worth mentioning that CBLOF and iForest also have linear
time complexity, but as stated by Goldstein and Dengel [22], HBOS
can detect outliers in large multivariate data sets faster than other
algorithms by computing a histogram to each feature of the data
set, scoring them individually, and combining them in the end.

On the other hand, ABOD presented the worst execution time
due to its cubic time complexity Oðn3Þ, which is caused since sev-
eral iterations are required for computing the anomaly score of
each instance in the data set.

5.4. Power consumption

Regarding power consumption (Fig. 3(d)), Histogram-based
Outlier Score was the algorithm with better results, consuming
170.91 mW. Considering the high correlation between resources
usage and power consumption presented in Table 3, we can see
that the energy-saving achieved by HBOS was influenced by its
low CPU (71:04%) and memory (1144.08 MB) demand. On the
other hand, Isolation Forest, that presented the worst power con-
sumption result, was the algorithm that most impacted in the
device’s memory usage (1386.98 MB).

5.5. Temperature

As resources usage affects the device’s temperature, we realized
that CPU usage impacted the device’s heat during the algorithm’s
execution (Correlation ¼ 0:82, as shown in Table 3). Besides, we
found a high correlation between execution time and temperature,
i.e., the longer the algorithms took to execute, the higher was their
impact on the device’s heat since the evaluated algorithms involve
computing-intensive tasks.

As a consequence of such correlations, the algorithm that pre-
sented less impact on device’s temperature was CBLOF, that uses
the Squeezer algorithm to define the number of clusters without
imposing bottleneck with IO operations and requires only one scan
over the data set for computing the anomaly score of instances. On
the other hand, ABOD was the algorithm that most generated heat
to the embedded device due to its higher execution time. All the
results regarding temperature are shown in Fig. 3 (e).

5.6. Energy-delay product

One of the well-known strategies to prolong the battery life of
embedded systems is through power-saving modes, that focus on
minimizing the device’s power consumption at the cost of increas-
ing the application’s execution time. In this context, there is a con-
cern regarding the balance between performance and power
saving [26].

Therefore, in our analysis we also considered the Energy-Delay
Product (EDP), which is given by Performance � Power Consump-
tion, to evaluate the impact of the chosen algorithms to this
trade-off.

The results showed that the execution time was the metric that
most impacted in the EDP results, since HBOS, which was the algo-
rithm that demanded less time to process data, achieved the best
results, and ABOD, that presented the poorest performance, was
the algorithm with the worst EDP index. Besides, as shown in
Fig. 3 (f), the EDP results presented a high correlation with the heat2 https://github.com/paulosevero/outlier_detec_comp

P.S.S. de Souza et al. /Measurement 164 (2020) 108042 5

https://github.com/paulosevero/outlier_detec_comp


imposed to the device, which showed that the more the algorithms
manages to balance the trade-off between performance (execution
time) and power saving, the better they can achieve thermal-
efficiency.

6. Final considerations

A core aspect of IoT is the communication between devices.
Although decentralizing processing has many benefits, such as
scalability, it also has its drawbacks. Relying solely on external
information requires high control of the exchanged data. The data
transmitted between devices might end up being anomalous,
either due to transmission issues, failed sensors, or even by mali-
cious attempts to affect the receiving end. As a consequence,
anomaly detection algorithms are steadily gaining field by allow-
ing the identification of abnormal data.

As changes in the environment drive the behavior of IoT appli-
cations, data patterns from IoT sensors might change abruptly,
within a short period of time, especially in agricultural scenarios,
wherein sensors are exposed to weather conditions which may
impose very restricting connectivity constraints. As a consequence,
an anomaly detection algorithm, proven as optimal in the morning,
may present poor results in the afternoon. Therefore, the decision
on which algorithm to employ for IoT data analysis should not be
definitive.

Accordingly, in this paper, we present an extensible conceptual
architecture that allows the self-adaptive selection and tuning of
anomaly detection algorithms based on user-defined goals such
as accuracy, power saving, or thermal efficiency. Experiments were
conducted, and the results show that timely choosing proper algo-
rithms for anomaly detection in IoT applications improve the anal-
ysis accuracy by 72.73% and minimizes device’s power
consumption and temperature by 18.59% and 15.94% respectively.

Declaration of Competing Interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

References

[1] J. Muangprathub, N. Boonnam, S. Kajornkasirat, N. Lekbangpong, A.
Wanichsombat, P. Nillaor, Iot and agriculture data analysis for smart farm,
Comput. Electron. Agric. 156 (2019) 467–474.

[2] P. Rekha, K. Sumathi, S. Samyuktha, A. Saranya, G. Tharunya, R. Prabha, Sensor
based waste water monitoring for agriculture using iot, in: 2020 6th
International Conference on Advanced Computing and Communication
Systems (ICACCS), IEEE, 2020, pp. 436–439.

[3] M. Xie, S. Han, B. Tian, S. Parvin, Anomaly detection in wireless sensor
networks: A survey, J. Netw. Comput. Appl. 34 (2011) 1302–1325.

[4] R. Chamarajnagar, A. Ashok, Integrity threat identification for distributed iot in
precision agriculture, in: 2019 16th Annual IEEE International Conference on
Sensing, Communication, and Networking (SECON), IEEE, 2019, pp. 1–9.

[5] A. Kamilaris, F.X. Prenafeta-Boldú, Deep learning in agriculture: A survey,
Comput. Electron. Agric. 147 (2018) 70–90.

[6] S. Rajasegarar, C. Leckie, M. Palaniswami, Anomaly detection in wireless sensor
networks, IEEE Wirel. Commun. 15 (2008) 34–40.

[7] H. Arai, K. Emura, T. Hayashi, A framework of privacy preserving anomaly
detection, in: Proc. 2017 Work. Priv. Electron. Soc. – WPES ’17, volume 2017-
January, ACM Press, New York, New York, USA, 2017, pp. 111–122.
doi:10.1145/3139550.3139551.

[8] A. Ukil, S. Bandyoapdhyay, C. Puri, A. Pal, Iot healthcare analytics: The
importance of anomaly detection, in: 2016 IEEE 30th International Conference
on Advanced Information Networking and Applications (AINA), 2016, pp. 994–
997, https://doi.org/10.1109/AINA.2016.158.

Table 3
Correlation among resources usage (CPU and memory) and the evaluated metrics.

Metrics Pearson Correlation Coefficient

Temperature and Execution Time 0.99
Temperature and EDP 0.92

RAM Usage and Power Consumption 0.87
CPU Usage and Temperature 0.82

CPU Usage and Execution Time 0.77
CPU Usage and Power Consumption 0.75

Temperature and Power Consumption 0.33

Fig. 3. Evaluation of six anomaly detection algorithms running on an embedded device considering multiple metrics of interest.

6 P.S.S. de Souza et al. /Measurement 164 (2020) 108042

http://refhub.elsevier.com/S0263-2241(20)30580-7/h0005
http://refhub.elsevier.com/S0263-2241(20)30580-7/h0005
http://refhub.elsevier.com/S0263-2241(20)30580-7/h0005
http://refhub.elsevier.com/S0263-2241(20)30580-7/h0010
http://refhub.elsevier.com/S0263-2241(20)30580-7/h0010
http://refhub.elsevier.com/S0263-2241(20)30580-7/h0010
http://refhub.elsevier.com/S0263-2241(20)30580-7/h0010
http://refhub.elsevier.com/S0263-2241(20)30580-7/h0010
http://refhub.elsevier.com/S0263-2241(20)30580-7/h0015
http://refhub.elsevier.com/S0263-2241(20)30580-7/h0015
http://refhub.elsevier.com/S0263-2241(20)30580-7/h0020
http://refhub.elsevier.com/S0263-2241(20)30580-7/h0020
http://refhub.elsevier.com/S0263-2241(20)30580-7/h0020
http://refhub.elsevier.com/S0263-2241(20)30580-7/h0020
http://refhub.elsevier.com/S0263-2241(20)30580-7/h0025
http://refhub.elsevier.com/S0263-2241(20)30580-7/h0025
http://refhub.elsevier.com/S0263-2241(20)30580-7/h0030
http://refhub.elsevier.com/S0263-2241(20)30580-7/h0030
https://doi.org/10.1109/AINA.2016.158


[9] S.N. Narayanan, S. Mittal, A. Joshi, Obd_securealert: An anomaly detection
system for vehicles, in: 2016 IEEE International Conference on Smart
Computing (SMARTCOMP), IEEE, 2016, pp. 1–6.

[10] S. Trilles, Ò. Belmonte, S. Schade, J. Huerta, A domain-independent
methodology to analyze iot data streams in real-time. a proof of concept
implementation for anomaly detection from environmental data, Int. J. Dig.
Earth 10 (2017) 103–120.

[11] V. Garcia-Font, C. Garrigues, H. Rifà-Pous, A comparative study of anomaly
detection techniques for smart city wireless sensor networks, Sensors 16
(2016) 868.

[12] P.S.S. de Souza, W. dos Santos Marques, F.D. Rossi, G. da Cunha Rodrigues, R.N.
Calheiros, Performance and accuracy trade-off analysis of techniques for
anomaly detection in iot sensors, in: 2017 International Conference on
Information Networking (ICOIN), IEEE, 2017, pp. 486–491.

[13] L. Atzori, A. Iera, G. Morabito, The internet of things: A survey, Comput. Netw.
54 (2010) 2787–2805.

[14] W. Yu, F. Liang, X. He, W.G. Hatcher, C. Lu, J. Lin, X. Yang, A survey on the edge
computing for the internet of things, IEEE Access 6 (2018) 6900–6919.

[15] V. Chandola, A. Banerjee, V. Kumar, Anomaly detection: A survey, ACM
Comput. Surv. 41 (2009).

[16] F.P. Rubin, P.S.S. de Souza, W. dos Santos Marques, R.R. de Oliveira, F.D. Rossi,
T. Ferreto, Evaluating energy and thermal efficiency of anomaly detection
algorithms in edge devices, in: 2020 International Conference on Information
Networking (ICOIN), IEEE, 2020, pp. 208–213.

[17] F.T. Liu, K.M. Ting, Z.-H. Zhou, Isolation forest, in: Proceedings of the 2008
Eighth IEEE International Conference on Data Mining, ICDM ’08, IEEE

Computer Society, Washington, DC, USA, 2008, pp. 413–422. doi:10.1109/
ICDM.2008.17.

[18] S. Ramaswamy, R. Rastogi, K. Shim, Efficient algorithms for mining outliers
from large data sets, in: Proceedings of the 2000 ACM SIGMOD International
Conference on Management of Data, SIGMOD ’00, ACM, New York, NY, USA,
2000, pp. 427–438. doi:10.1145/342009.335437.

[19] M.M. Breunig, H.-P. Kriegel, R.T. Ng, J. Sander, Lof: Identifying density-based
local outliers, in: Proceedings of the 2000 ACM SIGMOD International
Conference on Management of Data, SIGMOD ’00, ACM, New York, NY, USA,
2000, pp. 93–104. doi:10.1145/342009.335388.

[20] Z. He, X. Xu, S. Deng, Discovering cluster-based local outliers, Pattern Recogn.
Lett. 24 (2003) 1641–1650.

[21] Z. He, X. Xu, S. Deng, Squeezer: an efficient algorithm for clustering categorical
data, J. Comput. Sci. Technol. 17 (2002) 611–624.

[22] M.Goldstein, A. Dengel,Histogram-basedoutlier score (hbos): A fast unsupervised
anomaly detection algorithm, KI-2012: Poster Demo Track (2012) 59–63.

[23] H.-P. Kriegel, M. Schubert, A. Zimek, Angle-based outlier detection in high-
dimensional data, in: Proceedings of the 14th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, KDD ’08, ACM, New
York, NY, USA, 2008, pp. 444–452. doi:10.1145/1401890.1401946.

[24] S. Rayana, ODDS library, 2016. http://odds.cs.stonybrook.edu.
[25] S. Mittal, A survey on optimized implementation of deep learning models on

the nvidia jetson platform, J. Syst. Architect. (2019).
[26] T.S. Chis, P.G. Harrison, Performance-energy trade-offs in smartphones, in:

Proceedings of the 19th ACM International Conference on Modeling, Analysis
and Simulation of Wireless and Mobile Systems, ACM, 2016, pp. 127–135.

P.S.S. de Souza et al. /Measurement 164 (2020) 108042 7

http://refhub.elsevier.com/S0263-2241(20)30580-7/h0045
http://refhub.elsevier.com/S0263-2241(20)30580-7/h0045
http://refhub.elsevier.com/S0263-2241(20)30580-7/h0045
http://refhub.elsevier.com/S0263-2241(20)30580-7/h0045
http://refhub.elsevier.com/S0263-2241(20)30580-7/h0050
http://refhub.elsevier.com/S0263-2241(20)30580-7/h0050
http://refhub.elsevier.com/S0263-2241(20)30580-7/h0050
http://refhub.elsevier.com/S0263-2241(20)30580-7/h0050
http://refhub.elsevier.com/S0263-2241(20)30580-7/h0055
http://refhub.elsevier.com/S0263-2241(20)30580-7/h0055
http://refhub.elsevier.com/S0263-2241(20)30580-7/h0055
http://refhub.elsevier.com/S0263-2241(20)30580-7/h0060
http://refhub.elsevier.com/S0263-2241(20)30580-7/h0060
http://refhub.elsevier.com/S0263-2241(20)30580-7/h0060
http://refhub.elsevier.com/S0263-2241(20)30580-7/h0060
http://refhub.elsevier.com/S0263-2241(20)30580-7/h0060
http://refhub.elsevier.com/S0263-2241(20)30580-7/h0065
http://refhub.elsevier.com/S0263-2241(20)30580-7/h0065
http://refhub.elsevier.com/S0263-2241(20)30580-7/h0070
http://refhub.elsevier.com/S0263-2241(20)30580-7/h0070
http://refhub.elsevier.com/S0263-2241(20)30580-7/h0075
http://refhub.elsevier.com/S0263-2241(20)30580-7/h0075
http://refhub.elsevier.com/S0263-2241(20)30580-7/h0080
http://refhub.elsevier.com/S0263-2241(20)30580-7/h0080
http://refhub.elsevier.com/S0263-2241(20)30580-7/h0080
http://refhub.elsevier.com/S0263-2241(20)30580-7/h0080
http://refhub.elsevier.com/S0263-2241(20)30580-7/h0080
http://refhub.elsevier.com/S0263-2241(20)30580-7/h0100
http://refhub.elsevier.com/S0263-2241(20)30580-7/h0100
http://refhub.elsevier.com/S0263-2241(20)30580-7/h0105
http://refhub.elsevier.com/S0263-2241(20)30580-7/h0105
http://refhub.elsevier.com/S0263-2241(20)30580-7/h0110
http://refhub.elsevier.com/S0263-2241(20)30580-7/h0110
http://odds.cs.stonybrook.edu
http://refhub.elsevier.com/S0263-2241(20)30580-7/h0125
http://refhub.elsevier.com/S0263-2241(20)30580-7/h0125
http://refhub.elsevier.com/S0263-2241(20)30580-7/h0130
http://refhub.elsevier.com/S0263-2241(20)30580-7/h0130
http://refhub.elsevier.com/S0263-2241(20)30580-7/h0130
http://refhub.elsevier.com/S0263-2241(20)30580-7/h0130

	Detecting abnormal sensors via machine learning: An IoT farming�WSN-based architecture case study
	1 Introduction
	2 Related work
	3 Problem formulation
	4 Proposed architecture
	5 Evaluation and discussion
	5.1 Precision @ Rank N
	5.2 Area under the ROC curve
	5.3 Execution time
	5.4 Power consumption
	5.5 Temperature
	5.6 Energy-delay product

	6 Final considerations
	Declaration of Competing Interest
	References


