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ABSTRACT
Edge servers must routinely undergo maintenance to en-
sure the environment’s performance and security. During
maintenance, applications hosted by outdated servers must
be relocated to alternative servers to avoid downtime. In
distributed edges with servers spread across large regions,
ensuring that applications are not migrated to servers too
far away from their users to avoid high latency hardens the
maintenance planning. In addition, the limited power supply
of edge sites restricts the list of suitable alternative hosts
for the applications even further. Past work has focused on
optimizing maintenance or increasing the power efficiency
of edge computing infrastructures. However, no work ad-
dresses both objectives together. This paper presents Emma,
a maintenance strategy that reduces power consumption
during edge server maintenance without excessively ex-
tending maintenance time or increasing application latency.
Experiments show that Emma can minimize power con-
sumption during maintenance by up to 26.48% compared
to strategies from the literature.
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1 INTRODUCTION
Edge computing delivers low latency by performing com-
putations at the network edge, near data sources, rather
than solely on the cloud [22]. While allocating resources
nearby relieves latency issues, it also brings new challenges
in power consumption, as the edge infrastructure exhibits
constraints regarding computing power and network band-
width [2, 3]. This issue gets even more complicated as in-
frastructure operators conduct maintenance.

Maintenance imposes performance and energy impacts
on edge infrastructures, as servers remain unavailable dur-
ing patching but still consume energy. Applications must
be relocated to other servers to avoid downtime. At the
same time, they must remain close enough to users to de-
liver the expected performance levels [22]. Recent studies
employed different strategies to reduce the power con-
sumption of the edge infrastructure [4, 27, 28] or pro-
posed maintenance strategies to update cloud and edge
servers [18, 23, 24, 31]. However, none of these works
aimed at reducing the power consumption of the edge in-
frastructure during maintenance.

This paper presents Emma, a maintenance strategy that
reduces the power consumed by the edge infrastructure
when updating edge servers while also relocating appli-
cations during the process to avoid downtime and satisfy
latency constraints concerning users’ locations. To the best
of our knowledge, this is the first work to optimize power
consumption during maintenance on edge infrastructures.

The remaining of this work is organized as follows. Sec-
tion 2 discusses the fundamental concepts involving power
management and maintenance planning at the edge. Sec-
tion 3 reviews related studies and highlight our contribu-
tions to the literature. Sections 4 and 5 introduce the system
model and our proposed edge server maintenance strategy.
Section 6 details the experiments used to evaluate our ap-
proach. Finally, Section 7 concludes the paper.

2 BACKGROUND
This section discusses the fundamental concepts related to
our study, including resource management in edge comput-
ing infrastructure toward power consumption reductions
and seamless maintenance execution.
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2.1 Edge Computing
Edge computing [21] arises with the promise of delivering
low latency by bringing computational power to the edge of
the network so that applications can be executed closer to
users’ devices [22]. In a typical edge infrastructure, edge
servers are interconnected by switches and hosting users’
applications while users’ devices connect to access points
to communicate with their applications [10].

While the proximity between users and their applications
provides an inherent advantage over cloud data centers
in terms of latency, it also raises new concerns for manag-
ing infrastructure resources due to the limited processing
power of edge servers and the bandwidth capacity of the
edge network [14]. From a network perspective, ensuring
the same robustness of cloud data centers is practically
unfeasible due to the geographical dispersion of infrastruc-
ture resources [2]. At the same time, such dispersion is
necessary for hosting applications nearby users’ locations.

2.2 Power Consumption
In the past few decades, power conservation in cloud data
centers became a topic of interest for reducing costs and
managing system performance [17]. Conveniently, the shift
of some applications to the edge reduced the power con-
sumption of network devices and servers in cloud data cen-
ters. However, by promoting latency-sensitive applications
to run closer to users, managing the power consumption lev-
els of the edge infrastructure became increasingly difficult.
Accommodating applications with near real-time require-
ments on the edge infrastructure demand a considerable
amount of power from edge servers [10]. Thus, it becomes
necessary to explore different approaches that can reduce
the power consumption of the edge infrastructure.

At a hardware level, reducing power consumption of idle
resources is possible with low-power sleep modes at the cost
of requiring some time to revert to a normal state(power-
saving states [16]), adjustable component operational fre-
quency at the cost of reducing processing capacity (Dy-
namic Voltage and Frequency Scaling (DVFS) [9]), and the
eventual power off at the cost of an increase in boot time.
Power savings are also achievable using software-based
approaches employed on cloud data centers, such as migra-
tion of applications from overloaded servers consuming too
much power [13] or consolidating applications from under-
loaded servers and temporarily disabling idle ones [1] at
the cost of impacting the quality of service.

2.3 Maintenance
The European Standard BS EN 13306:2017 [25] defines
maintenance as a "combination of all technical, administra-
tive and managerial actions during the life cycle of an item
intended to retain it in, or restore it to, a state in which it
can perform the required function.".

Maintenance is a delicate process as it is essential for
the infrastructure. Lack of proper maintenance accounts for
over a third to half of downtime events and over 30% to 40%
of outages originating from hardware failures [30]. How-
ever, maintenance also places a heavy burden on the edge
infrastructure. Relocating applications is a common prereq-
uisite to conducting maintenance operations on servers.

As servers become unavailable during their update, not
all may be updated simultaneously. Whether by reprovision-
ing stateless applications or migrating stateful applications
(maintaining runtime information) [20], relocating applica-
tions is necessary to avoid downtime. Operating on idle and
offline servers prevents modifications from causing errors
and impacting the applications’ performance [15]. At the
same time, with the increase in network usage on relocating
applications and requiring more servers in use while others
update, an increase in power consumption is also expected.

3 RELATED WORK
This section discusses existing research related to our study.
First, Section 3.1 reviews research efforts on power man-
agement in edge infrastructures. Then, Section 3.2 dis-
cusses related efforts in maintenance planning. Finally, Sec-
tion 3.3 highlights our contributions to the state of the art.

3.1 Power Efficiency
The resource-constrained nature of the edge highlights the
importance of efficient and sustainable use of resources.
Most existing power-conserving efforts exploit hardware
features such as sleep states [19, 28] and DVFS [12, 27]
to reduce the power consumption of underutilized servers.
Whereas the first approach temporarily shuts down inactive
servers, the latter dynamically adjusts the operating fre-
quency of the hardware components while servers remain
active. Other strategies include exploiting virtualization
technology to relocate applications to servers with lower
power consumption and shut down idle hosts [4].

3.2 Maintenance
As maintenance typically stresses the infrastructure, early
efforts focused on reducing maintenance time through server
prioritization policies [18, 23, 31]. However, such approaches
focused on cloud data centers, relocating applications to
servers distant from users. In response to such limitations,
more recent strategies started including user locality in
migration decisions to make maintenance less intrusive for
latency-sensitive applications [24].

3.3 Our Contributions
As discussed in Sections 3.1 and 3.2, previous research
efforts have tackled the topics of power saving and main-
tenance planning separately. This work fills this gap with
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a novel maintenance strategy that reduces the infrastruc-
ture’s power consumption during edge server updates while
taking care of the quality of service of edge applications.

4 SYSTEM MODEL
This section presents our system model. We first describe
infrastructure assets that host users’ applications, and later
we detail the maintenance process to update edge servers.
We represent the map as a set of hexagonal cells based on
the model presented by Aral et al. [3]. The coordinates of
any location on the map correspond to the whole area of a
cell, such that there is no location where cells intersect.

The edge infrastructure comprises a set of network de-
vices N , located on each map cell, interconnected by a set
of network links L. A network device is an abstract repre-
sentation of a co-located network switch and base station.
Network switches form the cabled network infrastructure,
and base stations act as wireless access points for a set of
users U that access a set of applications A. Applications
are hosted by a set of heterogeneous edge servers S that is
also part of the edge infrastructure. Each network device’s
coverage area (base station) corresponds to a cell, and any
user inside the cell connects to it. Each edge server has an
exclusive location and is directly connected to the network
device in its cell.

We consider the update of all servers by applying a set
of patches, one at each host, and a set of sanity checks
after each patch. We assume that servers must reboot for
patches to take effect. We also assume that the applications
hosted on the servers are stateful and, therefore, relocating
applications is only possible with migrations. Every edge
server must be drained by migrating its hosted applica-
tions to other servers to avoid downtime. Accordingly, the
maintenance continues over several steps, representing the
elapsed time, until all edge servers are updated.

A network device is modeled as N𝑗 = (𝑤 𝑗 ), where 𝑤 𝑗 rep-
resents the wireless latency of N𝑗 ’s base station. A network
link is represented as L𝑢 = (𝑙𝑢 , 𝑏𝑢 , 𝑧𝑢 ), where 𝑙𝑢 , 𝑏𝑢 , and 𝑧𝑢

denote the link’s latency, bandwidth capacity, and power
consumption when active, respectively. We model an edge
server as S𝑖 = (𝑐𝑖 , 𝑑𝑖 , 𝜙𝑖 ,𝜓𝑖 , 𝑝𝑖 ), where 𝑐𝑖 and 𝑑𝑖 represent the
server’s resource capacity and demand, respectively, 𝜙𝑖 de-
notes the server’s outdated status (1 when S𝑖 is outdated
and 0 otherwise), 𝜓𝑖 denotes the time needed to update S𝑖 ,
and 𝑝𝑖 is the S𝑖 ’s power consumption.

We assume that an edge server continues to consume
power even when idle (not hosting any application) since,
without any intervention, it will remain powered on. We as-
sume that with direct intervention, servers can be powered
off and powered on at any time as long as they are idle. The
power consumed may differ for each server, but we consider
it a constant part of the maximum power consumed when
the server operates at full load. When hosting applications,
in addition to the power consumed for being powered on,

the server consumption grows according to its utilization
(applications’ demand over the server’s capacity).

An application is represented as A𝑘 = (𝑔𝑘 , 𝑞𝑘 ), where 𝑔𝑘
denotes A𝑘 ’s resource demand and 𝑞𝑘 denotes the max-
imum latency tolerated by the A𝑘 ’s user U𝑘 . We denote
the hosting relationship of an application A𝑘 on an edge
server S𝑖 with ℎ𝑘,𝑖 = 1 if it is hosted on the server and 0
otherwise. We assume that it is possible to estimate the
power consumption impact that could result from hosting
the application A𝑘 on the edge server S𝑖 , denoted as 𝑥𝑘,𝑖 .
We assume that there is a communication path 𝑅𝑘,𝑖 between
an application A𝑘 , hosted on the edge server S𝑖 and its
user U𝑘 , which is computed with Dijkstra’s shortest path
algorithm [8] using link latency 𝑙𝑢 as the weight. The accu-
mulated latency on a communication path 𝑅𝑘,𝑖 is denoted
as 𝜃𝑘,𝑖 and given by Eq. 1, where 𝑤 𝑗 is the wireless delay of
the network device to which the user U𝑘 is connected.

𝜃𝑘,𝑖 = 𝑤 𝑗 +
∑︁

𝑢 ∈ 𝑅𝑘,𝑖

𝑙𝑢 (1)

A Service Level Agreement (SLA) violation occurs when-
ever the accumulated latency of the application’s commu-
nication path exceeds the application’s latency threshold
(i.e., 𝜃𝑘,𝑖 > 𝑞𝑘 ). We assume that during a migration, the accu-
mulated latency remains the same as before the migration
started. Therefore, if the latency SLA of an application is in
a state of violation before the start of the migration, it will
continue to be the same during the migration. Only after
the migration ends and the communication path changes to
the new host of the application the accumulated latency is
recomputed for the new communication path.

Migrating an application implies transferring its data
from one server to another using the network infrastructure.
We assume that the data to transfer for the application
A𝑘 depends on its disk demand 𝑔𝑘 , which includes the
necessary space to store the information of the application
state. We denote the migration relationship of an application
A𝑘 using the link L𝑢 as𝑚𝑘,𝑢 . The migration path comprising
all links used to migrate A𝑘 is computed using Dijkstra’s
shortest path algorithm [8], where the transfer weight of a
link is denoted by 𝜏𝑢 and calculated according to Eq. 2.

𝜏𝑢 =
𝑚𝑎𝑥 (1,∑A

𝑘=1 𝑑𝑘 ∗𝑚𝑘,𝑢 )
𝑏𝑢

(2)

We limit the scope of migrations to originate from out-
dated servers during draining. Also, after a migration be-
gins, it cannot be canceled, nor can the migration path be
changed. However, there is no limit to the number of ap-
plications that can be migrated at any given moment other
than the limited resources available on edge servers. In case
a network link L𝑢 is included in more than one migration
path simultaneously, the Max-Min Fairness algorithm [6] is
used to determine the bandwidth shares that are allocated
to each application migration.
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5 PROPOSED STRATEGY
This section presents Emma, our strategy that reduces the
power consumption during edge server maintenance while
preserving the quality of service of applications.

Algorithm 1: Emma

1 S ← List of edge servers

2 𝑜𝑢𝑡𝑑𝑎𝑡𝑒𝑑 ← {}
3 foreach S𝑖 ∈ S do
4 if 𝜙𝑖 then
5 if 𝑖𝑑𝑙𝑒 (S𝑖 ) then
6 𝑢𝑝𝑑𝑎𝑡𝑒 (S𝑖 )
7 else
8 𝑜𝑢𝑡𝑑𝑎𝑡𝑒𝑑 ← 𝑜𝑢𝑡𝑑𝑎𝑡𝑒𝑑 ∪ S𝑖
9 else

10 if 𝑖𝑑𝑙𝑒 (S𝑖 ) then
11 𝑝𝑜𝑤𝑒𝑟𝑜 𝑓 𝑓 (S𝑖 )
12 Sort “outdated” by 𝛿 (asc.), max power as tiebreaker (desc.)

13 foreach S𝑖 ∈ 𝑜𝑢𝑡𝑑𝑎𝑡𝑒𝑑 do
14 S′ ← S − S𝑖 − {outdated being drained}
15 A′ ← List of applications on S𝑖
16 Sort A′ by demand (desc.)

17 if Servers S′ have capacity to host applications A′ then
18 foreach A𝑘 ∈ A′ do
19 Sort S′ by 𝜎 (asc.)

20 foreach S′𝑖 ∈ S′ do
21 if 𝑐𝑖 − 𝑑𝑖 ≥ 𝑑𝑘 then
22 if S′𝑖 is powered off then
23 𝑝𝑜𝑤𝑒𝑟𝑜𝑛 (S′𝑖 )
24 Compute migration path with 𝜆

25 Migrate A𝑘 to S′𝑖
26 Mark S𝑖 as being drained

27 break

5.1 Power Off Idle Server After Update
We make power-efficient decisions and opportunistically
power off edge servers once they are updated. Emma starts
by observing the state of every server. Idle servers, those
not hosting applications, can be updated immediately (Alg. 1,
lines 5–6). Soon after a server is updated, an opportunity
presents itself where an updated server is idle and, there-
fore, can be powered off to save power (Alg. 1, lines 10–11).
Outdated servers hosting applications must be drained be-
fore they can be updated (Alg. 1, lines 7–8).

5.2 Order to Drain Servers
The draining process of outdated servers hosting applica-
tions conducted by Emma (Alg. 1, line 12) organizes servers
in ascending order of drain weight 𝛿, (Eq. 3). The drain
weight of a server is calculated as the sum of its inverse
normalized capacity, normalized demand, and normalized
update duration. Min-Max Normalization [11] is used to
operate values of different scales. The geometric mean is
used to express the values of capacity and demand. Update
duration includes the duration of the patch and the sanity
checks. The maximum power consumption in descending
order acts as a tiebreaker for servers with the same weight.

𝛿 = 1 − 𝑛𝑜𝑟𝑚(𝑐𝑖 ) + 𝑛𝑜𝑟𝑚(𝑑𝑖 ) + 𝑛𝑜𝑟𝑚(𝜓𝑖 ) (3)

The earlier servers with more capacity are available, the
sooner they can host applications. The less demand applica-
tions have on a server, fewer data must be migrated, and
sooner draining completes. The faster the estimated update
of a server is, the sooner it can host applications or be pow-
ered off. Even if servers have a similar capacity, demand,
and update duration, the power they consume can differ.
Using the maximum power as a tiebreaker causes more
power-hungry servers to be drained, updated, and powered
off earlier, saving power.

5.3 Selection of Migration Candidates
When selecting candidate servers to host the applications it
needs to migrate, Emma excludes the server being drained
itself and outdated servers that have already progressed in
draining (Alg. 1, line 14). This distinction leaves as remain-
ing candidates, servers already updated, whichever their
power state is, and outdated servers that have not started
evacuating their applications. Servers that are being up-
dated cannot host applications and therefore are excluded.

The evacuation of applications follows a descending order
of most resource-demanding first (Alg. 1, lines 15–16). The
more demanding an application is, the more the power con-
sumed for hosting is expected. While the power consumed
by an application depends on the server and the applica-
tion’s demand for each type of resource, an approximate
value for demand can be obtained from a geometric mean.
The limited resources available for applications become
more apparent once servers are updated simultaneously. To
avoid prematurely draining servers, a preliminary verifica-
tion (Alg. 1, line 17) is put in place to decide whether the
current resources available on the candidate servers are
sufficient to drain the outdated server completely.

Selecting the most appropriate candidates for migrations
depends on the servers and each application’s user. Emma
organizes the candidate servers (Alg. 1, line 19) in ascend-
ing order of candidate weight, denoted as 𝜎. The candidate
weight for hosting A𝑘 on S𝑖 is calculated by Eq. 4 as the
sum of the normalized expected network communication
latency between the candidate and the application’s user,
the normalized power consumption impact of hosting the ap-
plication, and a bit representation of whether the server is
outdated or not (1 if outdated, 0 otherwise). The power con-
sumption impact from hosting an application also accounts
for the candidate’s idle power if it is currently powered off.

𝜎 = 𝑛𝑜𝑟𝑚(𝜃𝑘,𝑖 ) + 𝑛𝑜𝑟𝑚(𝜒𝑘,𝑖 ) + 𝜙𝑖 (4)

Emma prioritizes migrating applications to updated nearby
hosts displaying lower power consumption impact by host-
ing the applications. Migrating an application to an out-
dated server implies having to migrate such an application
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at least one more time to complete the maintenance, as
its new host will eventually need to be drained and up-
dated. Accordingly, prioritizing migrations to already up-
dated servers avoids unnecessary migrations and reduces
the overall maintenance time. In addition, we strive to select
the updated servers with a lower power consumption pro-
file, as once applications are relocated to updated servers,
they remain in such hosts until the end of maintenance.

Emma assumes that applications are positioned nearby
users before the maintenance. As such, migrating them to
nearby servers will likely require few links while keeping
applications with sufficiently low latency. Once migrations
use few links, the chances of dividing the bandwidth are
low—which helps reduce the migration duration—while re-
ducing the network power consumption. After sorting the
edge servers, Emma migrates the application to the best
candidate server found with enough free resources (Alg. 1,
lines 21–27). If the target server is currently powered off, it
is powered on before initiating the migration (Alg. 1, lines
22–23).

5.4 Selection of Links for Migration
Since migrations also impact the power utilization of the
network infrastructure, Emma computes the links to use in
the migration path (Alg. 1, line 24) using Dijkstra’s short-
est path weighting network links (edges) with a migration
weight, denoted as 𝜆. Since the links forming the path are
selected greedily, instead of using normalization, the mi-
gration weight is calculated by Eq. 5 as the default weight
attributed to the link plus a 𝛽 factor.

𝜆 = 𝜏𝑢 + 𝛽 (5)

Regarding 𝜏𝑢 , which is the default weight attributed to
links in our system model when computing the migration
path, we represent the 𝛽 factor in this work as the demand
of the application that is computing its migration path, dou-
bled in case the link is not currently in use, all divided by
the bandwidth of the link. In conformance with our system
model, we represent the alternative migration weight in
Eq. 6 as the sum of the migration demand for migrating
applications using the link plus the 𝛽 factor.

𝜆 =

∑A
𝑘=1 𝑑𝑘 ∗𝑚𝑘,𝑢 + 𝑑𝑘 ∗ (2 −𝑚𝑖𝑛(1,∑A

𝑘=1𝑚𝑘,𝑢 ))
𝑏𝑢

(6)

Migrations using links with more bandwidth can trans-
fer applications faster. Even if the associated switch ports
must be turned on, the faster the migration completes, the
earlier the ports can be powered off. To reduce the number
of switch ports in use only for migrations (not for the com-
munication of users and applications), Emma selects links
already in use. However, the more simultaneous migrations
share a link’s bandwidth, the slower applications transfer

and the longer the ports associated with the links have to re-
main powered on. Hence, Emma selects links already in use
with bandwidth shared by the least number of migrations.

After computing the migration path and starting the mi-
gration (Alg. 1, lines 24–25), the outdated server initially
hosting the application is marked (Alg. 1, line 26) as being
drained to avoid new incoming migrations from prolonging
the maintenance duration and the draining continues with
the next application.

6 PERFORMANCE EVALUATION
This section presents the experiments performed to evalu-
ate Emma’s effectiveness in edge server maintenance sce-
narios. First, we describe our methodology. Then, we dis-
cuss the performance of compared strategies regarding
maintenance metrics and power consumption.

6.1 Experiments Description
We consider an edge infrastructure with 100 heterogeneous
edge servers with linear power model [5] interconnected
by 400 network devices forming a partially-connected mesh
topology spread across a 20x20 hexagonal map grid. Edge
servers are placed in random positions on the map, as
shown in Figure 1. Table 1 details the edge server spec-
ifications. The network topology comprises links with 100
Mbps and 1000 Mbps distributed uniformly. Whereas 100
Mbps switch ports incur in an average latency of 4 ms and
consume 0.3W, 1000 Mbps switch ports incur an average
latency of 2 ms and consume 1W [7]. Unused switch ports
are automatically powered off as in Conterato et al. [7].
Nonetheless, network switches are always on regardless of
the occupation of network ports.

E5645 Jetson TX2 Raspberry Pi 4

Figure 1: Edge server positioning on the map.

Table 1: Edge server specifications.

Device Model Power Consumption (W) CPU / RAM / Disk

Raspberry Pi 4 [26] Idle: 2.56. Max: 7.3 4 Cores / 8 GB / 8 GB
Jetson TX2 [26] Idle: 7.5. Max: 15 4 Cores / 8 GB / 8 GB
E5645 [29] Idle: 63.1. Max: 200 12 Cores / 16 GB / 64 GB

In our scenario, all edge servers within the infrastructure
must be updated. Each server’s update process involves
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applying a patch and two accompanying sanity checks for
validation. The duration of each patch and sanity check
is established from the uniform distribution of {250, 350}
and {300, 400}, respectively, as in Souza et al. [24]. Edge
servers host a set of applications created with real delay
SLA requirements specified by 3GPP (specifications in Ta-
ble 2). To understand Emma’s effectiveness in different
scenarios, we create three datasets varying the number of
applications to generate three datasets with the average
occupation of edge servers in terms of CPU utilization in
25%, 50%, and 75%. We refer to these occupation scenarios
as A (low occupation), B (medium occupation), and C (high
occupation). After positioning users in random positions on
the map, we define the initial application placement by host-
ing applications on random edge servers that are preferably
close enough to the users to respect the delay SLAs.

Table 2: Types of applications used in the evaluation.

Type Description SLA Demand

GPS Indoor positioning 15 ms CPU: 1. RAM: 1 GB. Disk: 256 MB
Gaming Augmented reality 20 ms CPU: 2. RAM: 2 GB. Disk: 512 MB
V2V Vehicle-to-vehicle 30 ms CPU: 3. RAM: 3 GB. Disk: 1024 MB

We conducted the experiments using EdgeSimPy1, an
agent-based edge computing simulator that incorporates
fine-grained modeling of several resource management pro-
cesses in edge infrastructures, allowing the prototyping
of various resource allocation policies such as placement,
migration, and maintenance. During the evaluation, we com-
pared Emma against three literature maintenance strate-
gies (GLB [31], Salus [23], and Lamp [24]).

The rest of this section evaluates the compared strate-
gies in the considered scenarios regarding maintenance
duration, number of migrations, number of latency SLA
violations, and power consumption. As edge servers and
users are positioned randomly, the presented results are
the average of ten executions with different seed values in
each scenario.

6.2 Maintenance Duration
Figure 2 presents the average maintenance duration results
in each scenario. The major contributor to the different
maintenance duration results is the number of servers that
can be simultaneously updated, which is related to the in-
frastructure occupation. The more occupied the scenario is,
the more burdensome it becomes to drain servers. Not only
are more applications to evacuate, but fewer servers have
enough free resources to be candidates for the destinations
of migrations. Hence, fewer servers can update simultane-
ously, leading to a prolonged maintenance duration.

The evaluated strategies present similar results in scenar-
ios A and C. While a low occupation allows all the compared

1http://edgesimpy.github.io/
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Figure 2: Average maintenance duration.

strategies to update many servers at the beginning of the
maintenance, a high occupation restricts the decision space,
concealing potential differences between the approaches.
The most significant differences appear in scenario B. Over-
all, Emma and Lamp achieve the best results, draining
less occupied servers first to ensure that more updated
resources are available sooner. As for GLB, its consolida-
tion approach causes many applications to be relocated to
outdated servers, increasing the number of migrations and,
consequently, the maintenance duration.

6.3 Number of Migrations
As we must drain edge servers before updating them, all ap-
plications must be migrated at least once, regardless of the
maintenance strategy. Accordingly, our analysis focuses on
migrations targeting outdated servers. The notoriety of mi-
grations to outdated servers comes from the fact that those
servers can only be temporary hosts for the application.
Since they have to be drained eventually, any application
migrated to them will have to be relocated at least one more
time later on. All of these additional migrations can end up
prolonging the maintenance duration. Figure 3 presents the
number of migrations to outdated servers required by each
strategy in each scenario.
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Figure 3: Number of Migrations to Outdated Servers.

GLB has a significantly higher evacuation of applications
at the maintenance beginning than the other strategies.
This is caused by draining more occupied servers first
and aggravated by consolidating applications that we can
only migrate to outdated servers that will later have to be
drained. Salus causes comparatively more migrations than
Emma and Lamp in scenarios B and C because it does not
consider the application demand on the servers it selects
to drain. This causes more applications to be consolidated
on outdated servers at the beginning of the maintenance
due to migration decisions. However, by draining servers
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with more capacity and faster updates first, fewer servers
have to evacuate their applications at the beginning of the
maintenance as compared to GLB.

Lamp considers the demand of the applications on servers,
their capacities, and update durations when selecting which
server to drain first. This causes Lamp to evacuate fewer
applications than Salus at the beginning of the maintenance.
Emma has an additional tiebreak rule compared to Lamp to
drain more power-consuming servers first. Moreover, in ad-
dition to avoiding the violation of latency SLAs on migration
decisions, Emma also tries to host applications on servers
that will have the least power consumption impact.

Since Emma powers off servers right after they com-
plete their update and the power consumption impact ac-
counts for the static power when the server is powered
off, when considering that less power-consuming servers
will be drained and updated later, we can conclude that
some migrations will continue to target outdated servers
as the maintenance progresses. The additional migrations
are acceptable for Emma as a trade-off for reducing power
consumption while the maintenance progresses.

6.4 Latency SLA Violations
With the limited resources from servers nearby users, la-
tency SLA violations are bound to happen. Even if they
lead to SLA violations, some migrations are essential for
the progress in draining servers and eventually completing
the maintenance. Figure 4 depicts the average number of
SLA violations caused by each maintenance strategy on
each occupation scenario. The number of SLA violations
accounts for all applications with violated SLAs in each
simulation step; hence, even if the same application has its
SLA violation continuously over several simulations steps,
the number of violations will be the same as the number of
steps (i.e., one violation per step).
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Figure 4: Latency SLA Violations.

Lamp caused the least SLA violations, and Emma came
closely after. While both strategies have a similar approach
in migrating applications to servers that result in the least
communication latency, Emma has to balance avoiding
SLA violations with reducing power consumption. Some
of Emma’s decisions to migrate applications to servers with
the least power impact at the cost of increased latency will
lead to SLA violations which Lamp could avoid.

The other two strategies, Salus and GLB, caused more vio-
lations. While Emma and Lamp were designed with the con-
straints of the edge in mind, Salus and GLB were not. What
led Salus to cause fewer SLA violations than GLB comes
down to the number of migrations to outdated servers. Since
both strategies consolidate applications without regard to
the communication latency, the more migrations consoli-
date applications farther away, the higher the number of
SLA violations will be.

6.5 Power Consumption
In scenario A, the infrastructure’s low occupation favored
Emma’s power-efficient decisions. With many resources
available, Emma could leave servers with higher power
consumption powered off (i.e., E5645) and drain the less
consuming ones (i.e., Raspberry Pi 4 and Jetson TX2), which
could eventually host the applications for the rest of the
maintenance. Figure 5 shows the average power consump-
tion of the edge servers.
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In scenarios B and C, Emma had to deal with a more
occupied infrastructure, which limited the power efficiency
optimization space. However, in addition to prioritizing the
draining of edge servers with lower power consumption,
Emma focused on using active switch ports with lower
power consumption for network communication, reducing
the power consumption incurred by migrations by 35.37%
on average in the three scenarios, as shown in Figure 6.
Lamp obtained the second best results in terms of power
consumption reduction also for optimizing migrations. Al-
though Lamp does not consider infrastructure power con-
sumption, it conducted migrations using a smaller number
of links to avoid increases in application latency, which also
reduced the network power consumption.
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7 CONCLUSION AND FUTURE WORK
This work presents Emma, a maintenance strategy that bal-
ances the trade-off between avoiding SLA violations and
reducing the power consumed while conducting mainte-
nance of the Edge infrastructure. Our strategy enables the
update of edge servers while considering users’ locations
which is the deciding factor for the performance of latency-
sensitive applications we explore in this work.

Simulations based on real edge server and application
specifications comparing Emma against three approaches
from the literature show that Emma can reduce the edge
infrastructure’s power consumption during maintenance
by up to 26.48% without sacrificing the quality of service
delivered to applications. In future work, we intend to lever-
age other power-saving techniques (e.g., DVFS and sleep
states) to achieve higher power savings during maintenance
in scenarios with mobile users and composite applications.
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