Future Generation Computer Systems 148 (2023) 446-459

Contents lists available at ScienceDirect = =
FIGICIS!
Future Generation Computer Systems =
journal homepage: www.elsevier.com/locate/fgcs Te—
EdgeSimPy: Python-based modeling and simulation of edge)
computing resource management policies i

Paulo S. Souza **, Tiago Ferreto?, Rodrigo N. Calheiros®

4 School of Technology, Pontifical Catholic University of Rio Grande do Sul, Brazil
b School of Computer, Data and Mathematical Sciences, Western Sydney University, Australia

ARTICLE INFO ABSTRACT

Article history:

Received 13 January 2023

Received in revised form 17 May 2023
Accepted 13 June 2023

Available online 17 June 2023

The increasing popularity of applications with tight latency requirements has motivated research on
Edge Computing, which positions computing resources near data sources at the Internet’s edge. Despite
the emergence of simulation tools that make prototype validation less complex, time-consuming, and
expensive, researchers and practitioners still face significant challenges when developing resource
management strategies for the edge, as existing simulators fall short in providing a fine-grained

Keywords: model of edge applications provisioning. To overcome this challenge, we propose EdgeSimPy, a
Simulation simulation framework written in Python for modeling and evaluating resource management policies in
Modeling Edge Computing environments. EdgeSimPy features a modular architecture that incorporates several

Edge computing
Resource management
Containers

Python

functional abstractions for edge servers, network devices, and applications with built-in models for
user mobility, application composition, and power consumption that allow the simulation of various
scenarios. Furthermore, we propose a novel conceptual model that accurately represents the entire
lifecycle of edge applications and ensures seamless integration with real application traces. In addition
to submitting EdgeSimPy to an in-depth verification that checks the simulator implementation, we

discuss case studies that show EdgeSimPy in action in different large-scale scenarios.

© 2023 Elsevier B.V. All rights reserved.

1. Introduction

The emerging use cases of compute-intensive applications
with tight latency and bandwidth requirements have highlighted
the limitations of consolidated cloud data centers [1]. In response,
the IT industry has been moving towards Edge Computing [2],
which distributes computing resources near data sources, en-
abling processing at the network’s edge to avoid the long round-
trip times generated by traversing the Internet backhaul [3].

While proximity to data sources grants Edge Computing a
natural advantage over the cloud, it also introduces significant
technical constraints. As the deployment of a large-scale edge
data center in the middle of urban centers is typically unfeasible,
edge infrastructures often comprise groups of devices with re-
duced computing power distributed across small physical spaces
with limited power and cooling supply [4]. As such, ensuring
the efficient use of resources, which is more critical than ever,
also becomes challenging. Thus, efficient resource management

* Corresponding author.
E-mail addresses: paulo.severo@edu.pucrs.br (P.S. Souza),
tiago.ferreto@pucrs.br (T. Ferreto), R.Calheiros@westernsydney.edu.au
(R.N. Calheiros).

https://doi.org/10.1016/j.future.2023.06.013
0167-739X/© 2023 Elsevier B.V. All rights reserved.

policies need to be developed and tested to ensure they achieve
expected goals.

In addition to the cost and time required to validate resource
management policy prototypes, the distributed nature of edge
infrastructures adds extra barriers to empirical experimentation
of new resource management policies in real testbeds. Exam-
ples of such barriers are network instability and power outages.
Such challenges favored the rise of several edge simulators, de-
tailed in Section 3.1, that promise to close the gap between
conceptual research and prototyping. Despite such initiatives,
researchers and practitioners still face barriers when designing
resource management policies for the edge as existing simulators
fall short in providing fine-grained modeling of the edge infras-
tructure management, which comprises a variety of processes
such as application provisioning, network flow scheduling, server
maintenance, and others.

To overcome this challenge, this paper introduces EdgeSimPy,
a framework for modeling and simulating resource management
policies for Edge Computing environments developed in Python.
EdgeSimPy is built on top of a modular architecture comprising
several functional abstractions for edge servers, network devices,
and applications. EdgeSimPy embodies a novel conceptual model
that replicates the application provisioning method of widely

https://doi.org/10.1016/j.future.2023.06.013
https://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2023.06.013&domain=pdf
mailto:paulo.severo@edu.pucrs.br
mailto:tiago.ferreto@pucrs.br
mailto:R.Calheiros@westernsydney.edu.au
https://doi.org/10.1016/j.future.2023.06.013

P.S. Souza, T. Ferreto and R.N. Calheiros

used platforms such as Docker,! allowing seamless integration
with repositories like DockerHub.? In addition to demonstrating
the effectiveness of EdgeSimPy through an in-depth verification
that checks the correctness of the simulator implementation, we
describe two case studies available in the literature [5,6] that
show EdgeSimPy in action in different large-scale scenarios.

The contributions of this paper are the following:

e We provide a high-level interface that leverages the features
of well-known modeling solutions such as Mesa [7] and Net-
workX [8] to ease the development of resource management
policies and simulator extensions (Section 4.1).

We propose a novel conceptual model that accurately rep-
resents the entire lifecycle of edge applications by repli-
cating the behavior of widely used platforms like Docker
(Section 4.3).

We implement multiple system models for simulating sev-
eral features of edge environments, such as infrastructure
power consumption, application composition, service work-
load variations, and user mobility (Section 4.2-4.4).

We conduct an in-depth verification that checks the cor-
rectness of EdgeSimPy’s core features implementation by
comparing the simulation results to the expected outputs
(Section 5).

We demonstrate EdgeSimPy’s utility through two case stud-
ies based on peer-reviewed papers [5,6] that have employed
the simulator in different resource management scenarios
(Section 6).

The remainder of this paper is organized as follows. Section 2
reviews the concepts that shape the foundation of our research,
such as Cloud Computing, Edge Computing, and containers. Then,
Section 3 presents an overview of the edge simulation landscape,
highlighting the contributions of EdgeSimPy over existing simula-
tors. Next, Section 4 details EdgeSimPy’s architecture and its main
components. Sections 5 and 6 check EdgeSimPy’s implementation
correctness through an in-depth verification and demonstrate
its extensibility through two case studies. Section 7, discusses
lessons learned during EdgeSimPy’s development, highlighting
its limitations and improvement opportunities. Finally, Section 8
concludes the paper.

2. Background

Over the last decade, Cloud Computing has become one of
the most attractive options for hosting applications over the
Internet [9]. Cloud computing relies on centralized computing
resources in data centers, reducing infrastructure management’s
burden and allowing providers to offer cloud services at afford-
able prices for individuals and organizations.

With Cloud Computing acting as a catalyst for digital trans-
formation, the spotlight turned to use cases such as augmented
reality [10] and online gaming [11], which raised the bar re-
garding the use of software applications in people’s daily lives.
Eventually, it became evident that centralization around a few
cloud data centers results in them being geographically distant
from end devices, resulting in response times that conflicted with
the real-time requirements of those applications [12].

This limitation paved the way for the emergence of Edge
Computing [2], which adopts a decentralized model where ap-
plications are hosted on resources (e.g., small servers and single-
board computers) at the edge of the network, which results in
shorter response times. Fig. 1 illustrates the relationship between
cloud data centers, edge resources, and end devices.

1 https://www.docker.com/
2 https://hub.docker.com/

447

Future Generation Computer Systems 148 (2023) 446-459

Network :
Backhaul \ | /
Edge Servers

End Devices

Fig. 1. Interplay between cloud data centers, edge sites, and end devices.

Similarly to cloud data centers, edge infrastructures rely on
virtualization technology, often through Virtual Machines (VMs)
or containers [13]. The fundamental idea behind virtualization is
decoupling hardware (physical devices) from software (applica-
tions). Virtualization gives infrastructure operators fine-grained
control over physical resources, which creates several resource
management possibilities, such as multitenancy (i.e., hosting mul-
tiple applications on the same server) and on-the-fly relocation of
applications among servers.

In addition to yielding a better use of resources, virtualization
allows developers to bypass repetitive tasks during application
deployment with template images [14]. At this point, the dif-
ferences between VMs and containers show up. Whereas VM
images are monolithic, most modern container solutions follow
Docker’s® lead, splitting container images into read-only layers
representing software instructions. This difference may seem sub-
tle, but it affects the entire lifecycle management of applications
(i.e., building, deploying, and terminating operations) [15].

When a container needs to be spawned, a new writable layer
is created on top of the container image’s filesystem. All changes
made to the container are stored in that top writable layer, so that
image layers remain unchanged regardless of application-level
changes, which allows containers to share common container
layers [16]. On the other hand, spawning a VM requires the
creation of a complete copy of the base image, as no persis-
tence measure is taken to prevent applications from changing
instructions from their base images. Consequently, provisioning
a VM-based application is generally slower and generates higher
disk demand than a container-based application [17].

In addition to the differences in template images, VMs and
containers rely on different types of virtualization. In the VM
model, a control layer, known as a hypervisor, virtualizes the
hardware, giving each VM a dedicated virtual CPU, memory, 1/0,
and network devices. In the container model, a control layer,
known as container runtime, virtualizes the host OS kernel in-
stead of the hardware, so containers share the host OS kernel
while isolation is handled at the OS level. While containerized
applications do not need a standalone OS, containers display a
lower virtualization overhead than VMs at the cost of weaker
isolation among co-hosted instances [13].

There is no consensus about what type of virtualization should
be employed on edge infrastructures. Some researchers argue

3 https://docs.docker.com/storage/storagedriver/#images-and-layers

https://www.docker.com/
https://hub.docker.com/
https://docs.docker.com/storage/storagedriver/#images-and-layers

P.S. Souza, T. Ferreto and R.N. Calheiros

that VMs and containers should be employed depending on the
deployment needs, enabling a broader spectrum of demands to
be managed more efficiently [18]. In such a line of reasoning,
containers can fit better when shorter provisioning times and
small footprints are needed, while VMs can deliver better security
and isolation in multi-tenant deployments.

Despite the potential use cases for both types of virtualization,
containers have been taking the lead as the prime architecture
for deploying applications on edge computing devices, as their
small footprint and low virtualization overhead fit greatly to the
resource constraints of edge infrastructures while also meeting
strict provisioning time constraints of edge applications [19].

At a glance, the virtualization of the edge infrastructure im-
plies the reuse of consolidated resource management techniques
already adopted in Cloud Computing. However, for the perfor-
mance expectations of latency-sensitive applications running at
the edge to be met, new properties such as location awareness are
required to be considered, highlighting the need for new resource
management approaches.

Although Edge Computing displays significant growth poten-
tial, conducting experimental research is challenging for some
reasons. First, the proximity between computing resources and
end devices imposes challenges related to positioning the in-
frastructure since deploying large-scale data centers in the mid-
dle of urban centers might not be feasible. Consequently, edge
infrastructures are composed of small interconnected servers
dispersed in the environment, making it difficult to conduct
reproducible experiments, as multiple external factors can affect
results (e.g., network instability and power supply outages).

In addition, experimental research may comprise several test-
ing stages until prototypes are turned into consumer-ready prod-
ucts. Accordingly, conducting the entire experimentation process
in real testbeds implies investing time and budget in computing
and networking resources, power supply, and cooling with no
guarantees of returns. As such, simulation tools emerge as cat-
alysts for early research on Edge Computing, as evaluation in real
testbeds is better suited for prototypes in more advanced stages.

3. Related work

Over the past decade, simulation tools like CloudSim [20] and
GreenCloud [21] were broadly adopted to accelerate the develop-
ment and validation of resource management strategies for cloud
data centers. Similarly, the dawn of Edge Computing has moti-
vated the development of several edge simulators. This section
starts with an overview of simulation tools for Edge Computing
(Section 3.1). Then, it highlights the differences and contributions
of EdgeSimPy over those existing solutions (Section 3.2).

3.1. Edge computing simulators

Sonmez et al. [22] highlight the limitations of cloud and net-
work simulators when modeling the characteristics of edge en-
vironments. While cloud simulators such as CloudSim lack user
mobility and wireless support, network simulators are not fo-
cused on modeling edge servers and users. Accordingly, the au-
thors present EdgeCloudSim, a simulator that implements user
mobility, edge device power modeling, and network manage-
ment, facilitating the prototyping of placement strategies in Edge
Computing environments.

Qayyum et al. [23] argue that edge simulators abstract net-
work infrastructure characteristics, restricting the options for
designing new resource management strategies. The authors in-
troduce a new simulator, FogNetSim++, which models the power
consumption of edge devices, supports various communication
protocols (e.g., MQTT and CoAP), and simulates the handover of

448

Future Generation Computer Systems 148 (2023) 446-459

mobile users among network devices. Finally, the authors present
a use case demonstrating FogNetSim++ effectiveness in modeling
placement and scheduling policies for the edge.

Puliafito et al. [24] discuss the critical role of application mi-
gration in preserving low latency for users despite their mobility
and how edge simulators lack the features needed to evaluate
migration decisions. Based on these observations, the authors
propose MobFogSim, a simulator that models the application
migration process based on user mobility (including attributes
such as speed and moving direction) and the coverage area of
access points spread in the environment.

Amarasinghe et al. [25] present a novel simulator called
ECSNeT++, focused on deploying and processing stream-based
applications in Edge Computing environments. Unlike other sim-
ulators, ECSNeT++ enables fine-grained resource management for
streaming applications, where allocation policies can determine
how tasks are processed at the core level on edge devices (where
each CPU core has a processing queue), aiming to reduce the
network delay and power consumption of edge devices.

Lera et al. [26] introduce YAFS, an edge simulator focused
on evaluating allocation decisions for composite applications
(i.e., applications composed of multiple components) on edge
infrastructures. According to the YAFS model, routing policies
coordinate the application communication across the network,
allowing modules of a given application to be allocated on dif-
ferent edge devices. The authors present several YAFS use cases,
including scenarios with dynamic scheduling of application com-
ponents, infrastructure failures, and user mobility.

Jha et al. [27] discuss the complexity of the Cloud-Edge-IoT
ecosystem, which involves allocating resources across heteroge-
neous devices using multiple network protocols (e.g., LoRa and
Zigbee) and messaging protocols (e.g., CoAP and MQTT). After
highlighting the lack of edge simulators considering the proto-
cols of the Cloud-Edge-IoT ecosystem, the authors present the
IoTSim-Edge simulator. The simulator allows the prototyping of
resource management strategies for the edge based on the en-
ergy consumption of edge devices, application composition, user
mobility, and communication protocols.

Alwasel et al. [28] make a case for Osmotic Computing, a
paradigm that involves workload migration among cloud data
centers and edge devices based on performance and security
events. The authors present a novel simulator, [0TSim-Osmosis,
focused on Osmotic Computing scenarios, which implements a
variety of models for data transmission, energy consumption, and
application performance. Finally, the authors present a case study
using [oTSim-Osmosis to model policies that optimize perfor-
mance, energy consumption, and cost in Cloud-Edge scenarios.

Mahmud et al. [29] highlight the lack of support for real
datasets on edge simulators, which limits the evaluation of re-
source management policies in edge environments comprising
composite applications. Then, the authors introduce iFogSim2, a
simulator with native support to real datasets that incorporates
modeling and simulation of service migration in multi-tier in-
frastructures (e.g., Cloud-Edge), user mobility, service orchestra-
tion, and edge devices clustering. They present use cases demon-
strating iFogSim2 effectiveness in simulating several resource
allocation scenarios at the edge.

3.2. Discussion

As discussed in the previous section, the popularization of
Edge Computing motivated the development of several simula-
tion tools that address aspects such as user mobility and infras-
tructure heterogeneity, which are not covered by cloud simula-
tors despite being critical in edge scenarios.

Despite the research interest in simulation modeling focused
on Edge Computing environments, existing edge simulators lack

P.S. Souza, T. Ferreto and R.N. Calheiros

Table 1
Summary of built-in features supported by existing simulators and EdgeSimPy.

Future Generation Computer Systems 148 (2023) 446-459

Simulator Server power Network power

Network routing

User mobility Application composition Container lifecycle

EdgeCloudSim [22]
FogNetSim++ [23]
MobFogSim [24]
ECSNeT++ [25]

YAFS [26]
IoTSim-Edge [27]
[oTSim-Osmosis [28]
iFogSim2 [29]
EdgeSimPy (this work)

RN\ Xx
X X X X QXX
RN\ xK x

AN UL U U N NN
SRNUSRSR U xxx
XX XXX XXX

Table 2

Summary of potential use cases supported by existing simulators and EdgeSimPy.

Simulator Service migration Network flow scheduling Container registry management Maintenance operations
EdgeCloudSim [22] X x X X
FogNetSim++ [23] X v X X
MobFogSim [24] v x X X
ECSNeT++ [25] x v x x
YAFS [26] x x x x
[oTSim-Edge [27] X v X X
[oTSim-Osmosis [28] X v X X
iFogSim2 [29] v v x x
EdgeSimPy (this work) v v v v
native support for managing the lifecycle of containerized appli- Routing Maintenance Service Migration/Placement

cations. At first, extending existing simulators may seem trivial
as most of them are built with programming stacks that facilitate
the inclusion of new features. However, in this case, several
changes may be needed to allow the evaluation of container
management strategies at the edge, such as including several
new entities (e.g., container registries, images, layers, etc.) and
modeling the container provisioning process from scratch, as it
differs significantly from the VM model, as discussed in Section 2.

EdgeSimPy models aspects of the edge that are also supported
by existing simulators, such as user mobility, energy consumption
(for computing and network devices), and application composi-
tion. Complementarily, it provides functional abstractions that are
not covered by existing edge simulators (e.g., container registries,
container images, and container layers), enabling the simulation
of the whole lifecycle of containerized applications (e.g., place-
ment, scheduling, migration, update, and removal of operations).
Table 1 summarizes the main differences between EdgeSimPy and
related simulators regarding built-in features.

In addition to its built-in functionalities, EdgeSimPy aims to
contribute to the community by providing more comprehensive
support for specific use cases, as shown in Table 2. Although
specific simulators such as MobFogSim and iFogSim2 support
the modeling of service migration strategies, they focus predom-
inantly on VM-based migration models. For instance, although
MobFogSim provides a ContainerVM class, such an entity follows
the VM migration model, where containers are relocated from a
source to a destination server, overlooking the shareable struc-
ture of container images and the abstraction of container reg-
istries. In contrast, EdgeSimPy’s abstractions for container-related
entities (i.e., container registries, container images, and container
layers) allow it to support the design of relocation strategies
for containerized applications. In the same way, these new ab-
stractions implemented by EdgeSimPy make room for other use
cases. For instance, as EdgeSimPy represents container registries
as domain-specific services, it supports the design of provision-
ing policies that manage such entities aiming at optimizations
in the lifecycle of containerized instances. In addition, EdgeS-
imPy facilitates modeling maintenance operations for physical
resources (e.g., servers, network devices) and applications, which
is not supported by existing simulators. An in-depth analysis of
EdgeSimPy’s suitability in two case studies and a comparison with
existing simulators in these scenarios is provided in Section 6.

449

Scheduling
v

Provisioning

& ...y et ey)
D 1=
User 1 {(\ h %m
, 3
o N,
< > SN
v’_egistry N\

Services

Images

Layers

| CPU + RAM ‘ ‘ Disk |

Fig. 2. Sample EdgeSimPy simulation scenario. While “L” and “ES” denote the
network links and edge servers, “S”, “CI”, and “CL" represent the services,
container images, and container layers.

4. EdgeSimPy architecture

EdgeSimPy’s primary design goal is to support researchers
interested in evaluating resource management strategies in Edge
Computing infrastructures. For example, EdgeSimPy supports
modeling different types of resource allocation decisions, such
as placement, migration, scheduling, and maintenance, while
considering the heterogeneity of the infrastructure (power con-
sumption, resource capacity), users (mobility, access profile),
and applications (composition, performance requirements). Fig. 2
illustrates a sample EdgeSimPy simulation scenario in which enti-
ties interact with each other and different resource management
decisions affect the environment.

Before starting the simulation, EdgeSimPy expects an input
file defining the simulated scenario. EdgeSimPy input files are
written in the JavaScript Object Notation (JSON) format, which
has a human-friendly file structure [30] and is widely adopted
in various software domains [31], which facilitates EdgeSimPy
integration with other tools.

EdgeSimPy input files organize the metadata of each simulated
entity into a well-defined structure comprised of two distinct
information groups: attributes and relationships. Attributes refer
to the internal characteristics of entities, such as edge server

P.S. Souza, T. Ferreto and R.N. Calheiros

edgesimpy_dataset.json

"Application": [
{

"attributes™: {

Entity attributes with Plidn,
multiple data formats i "privacy_requirement": "medium
13
"relationships™: {
"services": [
{
One-to-many relationship "class": "Service", "id": 1
pointing to multiple entities L
1
. . "preferred_host": {
O.nel-to-one rglatlonshlp "class"; "EdgeServer”, "id": 1
pointing to a single entity
lationshi L
One-to-one relationship «— - "comm_model": my_custom_function :

pointing to a Python function

Fig. 3. Sample EdgeSimPy input file.

capacity, network link bandwidth, application delay, among oth-
ers. Relationships represent the associations between entities
(e.g., a service’s host or a user’s applications). By adhering to
this predefined structure, EdgeSimPy can automatically identify
entity input metadata and construct the simulated scenario, even
in cases where custom attributes and relationships have been
specified. Fig. 3 depicts a sample EdgeSimPy input file containing
the metadata of a given application entity.

Simulated entities can carry geospatial metadata, which fa-
cilitates the integration of datasets containing real or synthetic
coordinates to EdgeSimPy and allows the modeling of events
such as user mobility. By default, EdgeSimPy uses the map model
proposed by Aral et al. [32], which divides the environment into
hexagonal cells.

Once the simulation starts, EdgeSimPy triggers a monitoring
mechanism that stores snapshots of the entity’s state at the end
of each time step. Simulation logs are stored in MessagePack,*
a binary serialization format designed to be a faster and smaller
alternative to JSON [33]. Instead of writing data to disk each time
step, EdgeSimPy stores the simulation output at configurable in-
tervals of time steps, which enables reductions in the I/O pressure
during the simulation.

EdgeSimPy’s flexibility stems from a modular architecture (de-
picted as a block diagram in Fig. 4), which divides the functional
abstractions into four layers (Core, Physical, Logical, and Man-
agement). Each abstraction is self-contained to streamline the
integration of new features and algorithms.

The remaining of this section details the components that
comprise each layer of EdgeSimPy’s architecture.

4.1. Core layer

Edge Computing environments can be seen as complex sys-
tems with several entities that interact with each other in a
non-linear way. This ecosystem may assemble emergent phe-
nomena [34], which are the product of interactions between
entities. An example of an emerging phenomenon at the edge is
infrastructure saturation caused by a series of poor resource allo-
cation decisions. While detecting such type of emerging phenom-
ena is key to avoiding erroneous allocations, understanding its

4 https://msgpack.org/index.html

450

Future Generation Computer Systems 148 (2023) 446-459

| Placement " Migration " Routing " Scheduling "Maintenance|

Management

Container
Layer

Container
Image

Container

Registry Service

Application

Logical

Network
Switch

Edge

Base
Server

Station

User |

Physical

Core

EdgeSimPy

Fig. 4. EdgeSimPy architecture.

1. Loadi 2. Executing 3. Activating Agents
.—> AD c;a |r;g | Resource Management [—p/| and Advancing
atasel Algorithms Simulation Clock
h 4
6. Displaying 5. Stopping 4. Monitoring
@ Results Criterion is Met? System State

Fig. 5. EdgeSimPy’s simulation workflow.

causes through the attributes of individual entities is challenging
as it arises from the interaction between multiple entities.

One of the most popular techniques for studying emergent
phenomena is Agent-Based Modeling (ABM) [35,36]. ABM-based
simulations represent the world through a bottom-up approach,
where independent entities (called agents) interact with each
other and the environment over time according to communi-
cation and decision-making rules. Most ABM-based simulation
systems adopt the Fixed-Increment Time Advance (FITA) strat-
egy [37], which advances the simulation clock in fixed increments
of time delta (A). If multiple events are scheduled for the same
time step t, they are considered to have occurred concurrently at
the end of t.

FITA-based simulators must define two properties: the granu-
larity of A and the agents’ activation regime [37]. A’s granularity
affects the accuracy of the simulation output and the simulation
time—lower A yields higher accuracy to the simulator as it re-
duces the number of events computed in the same time step at
the cost of longer runtime. The activation regime determines the
order in which the simulator computes simultaneous events at
the end of each time step, which can affect the simulation output,
especially if simultaneous events influence each other.

EdgeSimPy employs the ABM approach, representing entities
of edge scenarios as interactive agents. Features that comprise
the simulation core (i.e., agent modeling, activation regime, and
time advance) are managed by Mesa [7], a well-known ABM
framework that ships several built-in modules that encompass
the building, analysis, and visualization of ABM simulations. Ed-
geSimPy’s simulation workflow is depicted in Fig. 5.

When EdgeSimPy is started, it loads input data from JSON files
or Python dictionaries, spawning simulated entities accordingly
(Fig. 5, step 1). After loading the scenario, EdgeSimPy starts an
iterative process until a user-defined stopping criterion is met.
At each time step, EdgeSimPy executes user-defined resource

https://msgpack.org/index.html

P.S. Souza, T. Ferreto and R.N. Calheiros

management policies, calls the activation regime for updating the
agents’ state, increments the simulation clock, and collects logs
about the system state, respectively (Fig. 5, steps 2-4).

Once the stopping criterion is met, EdgeSimPy stops the sim-
ulation and displays the metrics and logs collected during the
simulation (Fig. 5, step 6). Thanks to EdgeSimPy’s decoupled
architecture, it is possible to define custom stopping criteria,
resource management algorithms, and personalized routines for
collecting and exhibiting simulation metrics.

4.2. Physical layer

The Physical layer contains functional abstractions for users
and resources that comprise the edge infrastructure. Regardless of
their distinct functions, all components in the Physical layer have
a coordinates attribute, which carries the component’s geospatial
information. Physical entities that provide networking capabili-
ties leverage the features of NetworkX [8], a well-known graph
library for manipulating complex networks that ships several
built-in methods (e.g., shortest path and community finding).

The remainder of this section discusses the particularities of
each component in the Physical layer.

4.2.1. Base stations

Base Stations act as gateways in the edge network, providing
wireless connectivity for seamless communication between users
and edge servers. EdgeSimPy assumes that the base stations
cover the entire map area so that users always have connectivity
regardless of location. As such, the set of coordinates of the base
stations comprehends the whole available area for user transit,
so users cannot be in a position that represents a different co-
ordinate from all base stations, as they would not have network
connectivity. Base stations on EdgeSimPy embody multiple cus-
tomizable attributes, such as energy consumption and wireless
latency, enabling various scenarios to be modeled.

In addition to providing wireless connectivity, EdgeSimPy au-
tomatically handles user handoff between base stations based
on user mobility patterns. Accordingly, EdgeSimPy allows for a
realistic simulation of users moving through the edge network
and the associated changes in connectivity as they transition
from one base station to another. In addition, base stations can
be equipped with network switches for wired connectivity and
network flow management and edge servers for hosting services,
ensuring an adaptable model for edge environments.

EdgeSimPy can also be customized to support map models
where a single base station covers multiple coordinates, and
attributes such as wireless latency are affected by the distance
between the user’s and base station’s positions. This allows the
modeling of various connectivity scenarios and the analysis of
their impact on the performance of edge applications.

4.2.2. Network switches

Network switches provide wired connectivity between infras-
tructure components (e.g., base stations and edge servers) and
manage data flow in the network. These components ship mul-
tiple configurable parameters, such as chassis types and varying
numbers of ports with specific delay and bandwidth properties. In
EdgeSimPy, network switches are modeled as nodes in the graph
representing the network topology.

Although network switches are used as network nodes by de-
fault, EdgeSimPy allows other entities to be modeled for this pur-
pose, enabling a variety of networking scenarios to be simulated.
For example, cars can act as topology nodes in vehicular net-
works, serving the environment as intermediate data exchange
and communication entities.

451

Future Generation Computer Systems 148 (2023) 446-459

EdgeSimPy assumes that user requests are protected by Qual-
ity of Service (QoS) policies so that one user’s request does not
negatively affect others. On the other hand, more demanding
data transfers between edge servers (e.g., service migrations) are
modeled as network flows, sharing the bandwidth of network
links. The duration of a network flow depends on the bandwidth
of the links it spans over and the resource allocation policy
of the network switches. Whenever a network flow starts or
ends, EdgeSimPy runs a flow scheduling algorithm to update
the occupation of the involved links, redistributing the available
bandwidth, if applicable.

Since a network flow can use a path with links containing
different bandwidth demands, EdgeSimPy normalizes the band-
width available to a network flow to the lowest available band-
width between the links in its path. The Max-Min Fairness al-
gorithm [38] is used as the default flow scheduling algorithm,
dividing network bandwidth proportionally to the demand of
flows. As flow scheduling logic is fully encapsulated, it is possible
to define custom flow scheduling algorithms without burden.

During simulation, the network’s power consumption varies
according to resource usage and the technical features of network
switches. By default, EdgeSimPy includes the network power
models proposed by Conterato et al. [39] and Riviriego et al. [40]
However, the behavior of power models is fully encapsulated, al-
lowing new models to be implemented without requiring changes
to the simulator’s base features.

4.2.3. Edge servers

Edge servers are used to host services. EdgeSimPy assumes
that the edge infrastructure is virtualized so that edge servers
can host multiple services simultaneously. In addition to capacity
parameters such as CPU, RAM, and disk storage, edge servers can
also have performance parameters like Million Instructions Per
Second (MIPS), which allows for an alternative representation of
server performance. It is possible to define the distribution of
MIPS among applications on a server based on custom criteria,
allowing the modeling of advanced phenomena such as resource
contention among co-hosted applications.

Technical specifications such as hardware resources and re-
source usage affect the power consumption of edge servers dur-
ing simulation. EdgeSimPy incorporates three built-in generic
power consumption models (LinearPowerModel, QuadraticPow-
erModel, CubicPowerModel) [41], which assume that the power
consumption of edge servers grows according to their CPU us-
age following linear, quadratic, and cubic functions, respectively.
EdgeSimPy’s power modeling enables the implementation of ad-
vanced features, such as temporarily turning off edge servers to
save energy. As entity properties are fully encapsulated, EdgeS-
imPy also supports custom edge server power models.

As edge servers have static coordinates, they are immobile
by default. Nevertheless, EdgeSimPy can be extended to assign
mobility models to edge servers, allowing the representation of
mobile devices with computing capabilities, such as drones or
Single-Board Computers (SBCs) connected to automobiles.

4.2.4. Users

As part of the Physical layer, users have a coordinates attribute
that defines their location on the map. Users can remain in the
same position during the entire simulation or move according
to mobility models. By default, EdgeSimPy incorporates two mo-
bility models, Random and Pathway [42], which can be easily
replaced by other synthetic models or real mobility traces.

Users and applications are linked by a many-to-many rela-
tionship, which allows a user to access multiple applications or
even an application to be accessed jointly by multiple users.
Following this design principle, each user has properties that

P.S. Souza, T. Ferreto and R.N. Calheiros

User Access Pattern
User 1 Random(start=2, duration=[1, 4], interval=[3, 5])
User 2 Circular(start=4, duration=[Infinity], interval=[0])
User 3 Circular(start=3, duration=[3], interval=[3])
User 4 Circular(start=1, duration=[1], interval=[1, 2])
User 1 _ _ -
User2 : :
User 3 —
User4 ms= mm — - L L
To Ty T3 T Ts Te Tr T To Tio Tar Taa Tis Taa Tes Tag Taz Tas Tro Tao
Time

Fig. 6. EdgeSimPy’s built-in user access patterns.

define their delay and availability requirements for each appli-
cation they access. As each entity is self-contained, adding new
user requirements such as security and budget is possible, which
opens room for prototyping custom allocation strategies.

Each user has their access pattern, specifying when they will
call their applications and how long each access will last. By de-
fault, EdgeSimPy incorporates two user access pattern templates,
Random and Circular. While the former arbitrarily defines when
and for how long the user will access their applications, the latter
establishes a pattern that repeats indefinitely. Fig. 6 illustrates
four users using the Random and Circular access patterns.

As the user access patterns are defined through independent
classes, it is possible to easily define new patterns. This feature
allows EdgeSimPy to model different workloads, from streaming
to batch processing applications and serverless functions. As a
user’s access can be intermittent, allocation policies may choose
to deprovision applications during idle periods, which can be
beneficial in terms of resource saving or harmful if there are long
application provisioning times after the user’s request (as in the
case of serverless functions facing cold starts [43]).

4.3. Logical layer

The Logical layer comprises functional abstractions for appli-
cations running on the edge infrastructure. Despite supporting
VMs, EdgeSimPy adopts containerization as the default virtual-
ization model (see details in Section 2). Accordingly, abstractions
for container registries, container images, and container layers are
provided. The rest of this section describes the components of the
Logical layer.

4.3.1. Applications

Applications are modeled as abstract entities representing
data flows involving multiple services. This way, the application
services are allocated within the infrastructure rather than the
applications themselves. As EdgeSimPy models applications as
self-contained entities, they can receive custom attributes, such
as priority and budget, which enables modeling specific scenarios.

EdgeSimPy calculates the latency of a given based on the time
it takes to visit the servers that host all its services. The default
application implementation in EdgeSimPy assumes that the data
flow starts at the application users and passes through all the
application services sequentially.

In addition to the built-in application communication be-
havior, EdgeSimPy supports custom communication patterns to
model multiple software architectures, from monoliths to mi-
croservices [44] and stream applications [45]. It is also possible to
specify custom communication policies among the services that
compose a given application based on various criteria, such as
inter-service latency and the characteristics of the service hosts.

452

Future Generation Computer Systems 148 (2023) 446-459

Container Layer
(Read/Write)

Custom
Data

(25 MB)

Container Layer
(Read/Write)

Custom
{bata " (18 MB)
Java (47 MB)

Debian (61 MB)

Django (32 MB)

Image Layers
(Read-0Only)

Image Layers

Python (39 MB) (Read-0nly)

Shared
Layer

Debian (61 MB)

A
;

Service A (Container) Service B (Container)

Host Server

Fig. 7. Layered file system used by service in EdgeSimPy.

4.3.2. Services

Services in EdgeSimPy are modeled as container instances
within the infrastructure. While a service’'s disk demand cor-
responds to the size of the layers that comprise its container
image, its CPU and memory demand describe the computational
resources required by the service instance and therefore are unre-
lated to the service’s image. Each service also has a state attribute,
which defines whether it is stateless or stateful.

Services leverage a layered file system model to separate ser-
vice components and ensure that changes in one containerized
service do not affect other co-hosted services using the same base
image. This containerization approach provides an efficient and
isolated environment for hosting services in the edge infrastruc-
ture. The layered file system model used by services in EdgeSimPy
is shown in Fig. 7.

The layered file system used by services divides the service
image into two parts: the container and image layers. In this
setting, each service has its container layer with its runtime files
and user session data. As the container layer is not shared with
co-hosted services, it has read—-write permissions. Conversely, im-
age layers hold read-only permissions as they provide static files,
libraries, and dependencies, and are shared among co-hosted
services. This separation enables a streamlined relocation process
and ensures that services can be efficiently transferred across
edge servers without affecting other instances or interfering with
shared resources.

The state attribute plays a crucial role in how service is relo-
cated. Stateless services maintain no user session data or runtime
state, allowing them to be relocated without downtime, as their
container layer can be easily discarded on the target host and
recreated on the destination host. In contrast, stateful services
require the transfer of both image layers and the container layer
containing user session data, resulting in a brief downtime while
the service’s state is transferred to the destination host.

4.3.3. Container registries

Container registries are the main component when allocating a
service in the edge infrastructure, as the service’s container image
is pulled from them to the destination host. A container registry
is a containerized service built on top of a registry image that
embeds image distribution and storage functionality. Thus, a con-
tainer registry also has its own CPU and memory requirements for
performing image distribution processing.

EdgeSimPy supports the definition of custom policies for se-
lecting from which container registries container images are
pulled to the edge servers. This feature fosters the design of re-
source management strategies that optimize service provisioning
by considering factors such as network usage and the location
of container registries. Additionally, as container images follow a
layered file system model, EdgeSimPy makes room for resource

P.S. Souza, T. Ferreto and R.N. Calheiros

management strategies that leverage multiple container registries
to download the layers of a given image.

EdgeSimPy also allows defining how many layers of a par-
ticular image are downloaded simultaneously to a given host.
This level of control enables the design of resource management
strategies that optimize service provisioning by balancing multi-
ple metrics of interest, such as network usage, provisioning time,
and resource availability.

As container registries are modeled as domain-specific ser-
vices that distribute container images across the edge infras-
tructure, EdgeSimPy enables dynamic provisioning of container
registries as it does with regular services. This feature allows
users to adapt the container registry deployment to changing net-
work conditions, resource requirements, or application demands,
ensuring efficient image distribution and optimized resource uti-
lization in the edge environment.

4.3.4. Container images

Container images embed the basic functionality for services.
By default, each image has a tag attribute representing its version,
which enables the modeling of scenarios where new image ver-
sions are released during simulation. Like applications, container
images are modeled as abstract entities, so they have no resource
requirements by themselves. Instead, the disk demand of a given
container image results from the size of its layers.

EdgeSimPy models container images according to the Open
Container Initiative (OCI)° format, a well-known standard for
container images. By adhering to the OCI format, EdgeSimPy
can incorporate metadata from real-world container images from
repositories like DockerHub, providing a more accurate represen-
tation of services in the edge infrastructure.

In addition to providing compatibility with real image traces,
EdgeSimPy’s container image format allows the definition of ser-
vice provisioning constraints to model edge-specific scenarios.
For instance, it is possible to define datasets with container image
specifications that narrow the service provisioning options based
on the architecture and hardware capabilities of available hosts.

4.3.5. Container layers

Container layers represent the instructions aggregated into
container images. Each container layer depicts a set of files added
or modified concerning the previous layer. In EdgeSimPy, con-
tainer layers can be identified by a digest attribute, enabling hosts
to check the integrity of downloaded container layers.

Each container layer carries attributes representing its soft-
ware instruction and disk size. As container images in EdgeS-
imPy adhere to a layered filesystem model, co-hosted services
can share read-only image data, resulting in considerable disk
savings. This model makes room for the design of layer-aware
resource management strategies that could minimize application
provisioning time by selectively choosing hosts already possess-
ing the necessary service layers.

4.4. Management layer

In addition to modeling the behavior of several entities of edge
environments, EdgeSimPy provides fine-grained control over net-
work and edge server resources. Consequently, it eases the pro-
totyping of various resource management policies, such as:

e Service Placement: Defining the placement of application
services in the infrastructure represents a vital decision to
ensure the efficient use of resources. By supporting the def-
inition of custom user access patterns, EdgeSimPy enables

5 https://opencontainers.org/

453

Future Generation Computer Systems 148 (2023) 446-459

the modeling of online and offline placement strategies
[46,47]. In offline placement scenarios, the allocation policy
has a priori knowledge about all the applications it needs to
provision. In online placement scenarios, application provi-
sioning requests occur at runtime, and provisioning policies
must allocate application services on demand.

Service Migration: Given the strict latency requirements of
applications running on the edge infrastructure, user mobil-
ity may require relocation of services at runtime. To support
this functionality, EdgeSimPy supports the modeling of allo-
cation policies with fine-grained control over the migration
process. In this way, migration policies can define which
edge servers should host the services, from which container
registries the layers should be pulled, and which network
paths should be used in this process.

Maintenance: Updates for applications and physical devices
are often released to add new features, fix bugs, or miti-
gate security vulnerabilities. As components of the Physical
and Logical layers have versioning attributes, EdgeSimPy
supports the modeling of maintenance scenarios, incorpo-
rating decisions such as the order in which components are
updated.

Network Flow Scheduling: In large-scale edge scenarios,
events such as user mobility may trigger the provisioning
of multiple applications simultaneously. However, the lack
of network management can allow large flows to indis-
criminately saturate the network, causing the starvation of
smaller flows and reduction of the overall network perfor-
mance [48,49]. Accordingly, EdgeSimPy allows the definition
of scheduling strategies for network flows that can con-
trol the priority of each flow based on objectives modeled
through built-in or custom attributes.

The entities comprising EdgeSimPy’s architecture shape a ro-
bust platform for modeling various Edge Computing scenarios,
where different resource allocation policies can be prototyped
and validated without burden. In addition, each component is
designed to work independently, which facilitates the inclusion
of new attributes and entities to the simulator, extending the
breadth of potential EdgeSimPy use cases. The next section de-
scribes the verification process used to demonstrate the correct-
ness of EdgeSimPy implementation.

5. EdgeSimPy verification

One of the main advantages of simulation is that it allows
researchers to understand and explain real-world phenomena
with lower complexity and cost than empirical experimenta-
tion [50]. As modeling all the details and behaviors of a real-world
system might be infeasible given the high complexity involved,
simulators usually make assumptions and abstractions about the
real world. While these can reduce the simulation complexity,
they inherently add inaccuracies to the model [51].

One of the most critical tasks in simulation studies is checking
if a simulator delivers acceptable accuracy levels given the as-
sumptions and abstractions it implements. This task generally in-
volves two processes: validation and verification [52]. While vali-
dation determines whether the conceptual model accurately rep-
resents the real world, verification checks whether the conceptual
model’s implementation is correct.

The conceptual model adopted in EdgeSimPy is based on well-
known abstractions representing user mobility, network schedul-
ing, and application provisioning, which have already been for-
malized and discussed in past research [42,53,54]. As EdgeSimPy
adopts such abstractions without further modification, model
validation is out of the scope of this work.

https://opencontainers.org/

P.S. Souza, T. Ferreto and R.N. Calheiros

Workflow 1 Workflow 2
&= &=
User1l User 2
S3]

- 6\\, \gb/ ,
o’ e’
L9——
e O

Fig. 8. Overview of the infrastructure considered in EdgeSimPy’s verification.
Symbols “L”, “ES”, and “S” denote the infrastructure’s network links, edge
servers, and services.

The remaining of this section presents a verification that
demonstrates the correctness of the implementation of EdgeS-
imPy’s conceptual model. The verification process is conducted
using two well-known techniques, Animation and Tracing [50],
which display the simulated entities’ behavior over time, allowing
us to check the simulator’s logic correctness.

5.1. Scenario description

Fig. 8 depicts the edge infrastructure used in EdgeSimPy’s
verification. We consider three NVIDIA Jetson TX2 boards rep-
resenting the edge servers. Each edge server has 4 CPU cores,
8 GB of RAM, and 64 GB of storage (CPU and memory values are
obtained from Siizen et al. [55]). Edge servers can download at
most three container layers at once, following Docker’s default
configuration to avoid network congestion.® The edge network
comprises nine links with heterogeneous capacities (for simplic-
ity’s sake, L1-L4 have a bandwidth capacity of 9 Mbps while
L5-L9 have 2.5 Mbps).

In this scenario, two users move according to the Pathway
model [42], each accessing one of the two existing applications.
As detailed in Fig. 9, Application 1 has a stateless service (S1),
while Application 2 comprises a stateless service (S2) and a
stateful service (S3). Services S1 and S2 use the same base image
with a single layer (L1), while S2 has a base image with four layers
(L1-L4). All services are initially on edge server ES1, which also
hosts a container registry demanding 1 CPU core, 1 GB of memory,
and 10 MB of disk.

In the first time step, all services start to be moved out of edge
server ES1. This behavior is defined through a simple resource
allocation strategy to demonstrate different events within the
service provisioning process. Specifically, S1 is moved to edge
server ES3 through links L3 and L6, while S2 and S3 are moved
to edge server ES2 through link L4. The reallocation of the three
services takes six time steps. For simplicity, each time step corre-
sponds to 1 s, and the Max-Min Fairness algorithm [53] is used
as the network flow scheduling policy.

6 https://docs.docker.com/engine/reference/commandline/pull/#concurrent-
downloads

454

Future Generation Computer Systems 148 (2023) 446-459

State: O MB
CPU Demand: 1 core
Memory Demand: 1 GB

State: 0MB
CPU Demand: 1 core
Memory Demand: 1 GB

State: 9MB
CPU Demand: 1 core
Memory Demand: 1GB

Layer 4(L4) - 9MB
Layer 3(L3) - 9MB
Layer2(L2) - 6 MB
Layer 1(L1) - 12MB
Image 2

Layer 1(L1) - 12 MB
Image 1

Layer 1(L1) - 12 M8
Image 1

Service 1 (S1) Service 2 (S2) Service 3 (S3)

Application 1 Application 2

Fig. 9. Application specifications used in EdgeSimPy’s verification.

Service 1 Layer 1:BW:2.5 Left:9.5: BW:2.5. Left:7 :BW:2.5. Left:4.5! BW:2.5. Left:2 | BW:2. Left:0
Layer 1 BW:3. Left:9 BW:3. Left:6 BW:3. Left:3 BW:3. Left:0
Layer 2 BW:3. Left:3 BW:3. Left:0
Service 2
Layer 3 BW:3. Left:6 BW:3. Left:3 BW:3. Left:0
Layer 4 BW:3. Left:6 BW:6. Left:0
Service 3 State BW:9. Left:0
T, T, T, T, Ts

Fig. 10. Network flows used to transfer container layers and service states
among servers. Here, “BW” represents available bandwidth, and “Left” is the
remaining data to be transferred in future time steps.

The remainder of this section discusses how EdgeSimPy events
replicate the expected behavior. For such, we draw a parallel
between the result of the EdgeSimPy simulation, presented in
Figs. 10-11 and Table 3, and the conceptual model adopted within
the simulator (i.e., containerized service provisioning and band-
width sharing based on the Max-Min Fairness algorithm [53]).

5.2. Verification discussion

Fig. 10 shows the progress of network flows spawned by
service migrations. Service S1 is migrated across links L3 and
L6, which have different bandwidths (9 Mbps and 2.5 Mbps,
respectively). In such a scenario, EdgeSimPy equalizes the band-
width available for service provisioning to the bandwidth of
the link with the lowest capacity. Accordingly, layer L1, which
corresponds to the base image of service S1, is transferred at 2.5
Mbps during time steps 1-5.

Services S2 and S3 are moved from edge server ES1 to edge
server ES2 through the same path, sharing the bandwidth of
link L4. As the base images of S2 and S3 are built on top of
layer L1, ES2 does not pull L1 twice. Despite the layer-sharing
optimization, edge server ES2 can only pull three layers at once,
which forces layer L4 to wait during time steps T; and T, until
the number of active downloads of ES2 decreases as the transfer
of layer L2 ends.

At time step T, the Max-Min Fairness algorithm distributes
3 Mbps and 6 Mbps to the active flows of layers L1 and L4,
respectively, instead of giving them an equal bandwidth share.
That happens because Max-Min Fairness divides the available
bandwidth proportionally to the size of the network flows. As
layer L1’s flow only needs 3 Mbps to finish, the 1.5 Mbps leftover
is offered to L4’s flow, which can be transferred at 6 Mbps.

The differences between stateless and stateful service provi-
sioning are noticeable in time step Ts. Once all layers of S3’s base
image are present in edge server ES2, S3 is stopped on its source
host ES1, and its state is transferred to ES3. EdgeSimPy keeps S3
unavailable during time step Ts while its state is transferred, as
depicted in Fig. 11. Further information about service provision-
ing is presented in Table 3, which details resource demand and
provisioned layers on the edge servers throughout the simulation.

https://docs.docker.com/engine/reference/commandline/pull/#concurrent-downloads
https://docs.docker.com/engine/reference/commandline/pull/#concurrent-downloads

P.S. Souza, T. Ferreto and R.N. Calheiros

Future Generation Computer Systems 148 (2023) 446-459

(d) Time step T4

(e) Time step T'5

(f) Time step T¢

Fig. 11. Dynamics of each time step of EdgeSimPy’s verification. Dashed arrows represent the network paths used for communication between users and services.

Table 3
Edge servers state throughout EdgeSimPy’s verification simulation.
Time step Instance Demand Services Waiting queue Download queue Layers
CPU RAM Disk

1 4 4096 46 Service 1, Service 2, Service 3 Registry, L1, L2, L3, L4
T 2 2 20438 36 L4 L1, L2, L3

3 1 1024 12 L1

1 4 4096 46 Service 1, Service 2, Service 3 Registry, L1, L2, L3, L4
T, 2 2 2048 36 L4 L1, L3 L2

3 1 1024 12 L1

1 4 4096 46 Service 1, Service 2, Service 3 Registry, L1, L2, L3, L4
Ts 2 2 2048 36 L1, L4 L2, L3

3 1 1024 12 L1

1 4 4096 46 Service 1, Service 2, Service 3 Registry, L1, L2, L3, L4
Ty 2 2 2048 36 L2, L3, L1, L4

3 1 1024 12 L1

1 2 2048 46 Service 1, Service 3 Registry, L1, L2, L3, L4
Ts 2 2 2048 36 Service 2 L2, L3, L1, L4

3 1 1024 12 L1

1 1 1024 46 Registry, L1, L2, L3, L4
Ts 2 2 2048 36 Service 2, Service 3 L2, L3, L1, L4

3 1 1024 12 Service 1 L1

6. EdgeSimPy case studies

This section presents two case studies from research papers
that employed EdgeSimPy as a validation platform, illustrating
how EdgeSimPy can be easily extended to comprehend vari-
ous resource management scenarios at the edge. An in-depth
discussion of each case study can be found in the original publica-
tions [5] (Section 6.1) and [6] (Section 6.2). Accordingly, this sec-
tion focuses on describing the scenarios and adjustments made to
EdgeSimPy for the simulations rather than discussing the results.

455

6.1. Case study 1: Application migration

As Edge Computing research matures, large-scale infrastruc-
ture providers are starting to move toward a new service model
called Edge-as-a-Service (EaaS), which harnesses the physical
proximity of the edge in an infrastructure capable of delivering
the speed necessary to meet the demand of latency-sensitive ap-
plications [56,57]. Just as cloud services have led a technological
shift over the past decade, EaaS offerings display great potential
to become the “next big thing” in the IT industry.

P.S. Souza, T. Ferreto and R.N. Calheiros

This case study explored the possibility of federated edges,
in which coalitions of EaaS providers are created to enhance
profit and meet ever-increasing application performance expec-
tations [58]. In such a scenario, microservice-based applications
must be migrated according to user mobility while respecting
privacy requirements of specific microservices.

Whereas infrastructure providers are willing to share resources
to reduce application latency bottlenecks, users exhibit distinct
levels of trust with different providers, which restricts allocation
options for services with special privacy requirements. The per-
formance evaluation compared a novel algorithm against three
migration strategies from the literature regarding the number
of migrations and SLA violations, which consider predefined la-
tency thresholds of applications and the privacy requirements of
microservices.

EdgeSimPy’s base architecture does not include a functional
abstraction for infrastructure providers. Therefore, to support this
case study, a “provider" attribute is added to edge servers to
identify their infrastructure providers, and a “trusted_providers"
attribute is added to users with the providers they trust. During
simulation, both parameters are checked to arrange edge servers
based on the level of trust between users and infrastructure
providers. In addition, a “privacy_requirement" attribute is added
to services to specify their privacy requirement level.

The simulated scenario comprised an infrastructure with 60
edge servers managed by two infrastructure providers and 240
services with heterogeneous capacity, privacy, and latency re-
quirements. The obtained results demonstrated that certain mi-
gration decisions, i.e., prioritizing services with special privacy
requirements from applications with tight latency demands, can
reduce privacy leaks by up to 7.95% at federated edges without
sacrificing application latency [5].

6.2. Case study 2: Edge server maintenance

Edge infrastructures typically comprise computing resources
deployed near end users, as it helps deliver low latency to appli-
cations [2]. At the same time, proximity also forces infrastructure
dispersion, as deploying large-scale data centers close to urban
centers may not be feasible [1]. While the distribution of com-
puting resources allows them to be close to end users, it also
introduces technical challenges related to IT operations.

In case edge resources cannot be deployed on a large scale
within centralized facilities, communication between nodes typi-
cally relies on public networks, which increases the chance of in-
stability caused by outages and lower bandwidth [59]. In addition,
outdoor-deployed edge devices are more prone to physical issues
and security threats. In such a scenario, infrastructure opera-
tors must invest in maintenance strategies to mitigate eventual
security threats and infrastructure failures.

This case study focused on an edge server maintenance sce-
nario. This case assumed that patches require edge servers to be
rebooted for the changes to take effect. Consequently, before an
edge server can be updated, the applications it hosts must be
relocated to another server to avoid downtime (such a process
is called server draining). As such, maintenance strategies need
to schedule the server update order and define new hosts for the
applications hosted by the servers that will be updated.

This case study imposed two main objectives to maintenance
strategies: reduce maintenance time and application latency bot-
tlenecks. From a security perspective, maintenance needs to be
completed as soon as possible, as patches can correspond to
critical security updates, so the infrastructure remains vulnerable
until all edge servers are updated. At the same time, applications
hosted on the infrastructure are latency sensitive, so migration
decisions performed to drain servers must keep applications close
enough to their users to ensure that latency remains low.

456

Future Generation Computer Systems 148 (2023) 446-459

The default implementation of edge servers in EdgeSimPy
comprises no attribute related to maintenance. Therefore, to sup-
port this case study, an “updated" attribute is added to edge
servers to denote their updated status (this attribute is False by
default). A “Patch" entity is also created with the time required
to complete the update. Edge servers and patches are bounded
through a relationship attribute. Finally, an “update()" method
is implemented inside the edge server entity, representing the
patching process. Once an edge server starts to be updated, it
is tagged as unavailable for its patch duration, and when the
update period ends, the edge server’s update status is changed
accordingly. In this case study, the simulation continues until all
edge servers are updated.

This case study evaluation compared two novel algorithms
against two strategies from the literature regarding maintenance
time, the number of migrations, latency requirement violations,
and vulnerability surface (which quantifies how long edge servers
remain outdated during maintenance). The simulated scenario
comprises an infrastructure with 40 edge servers hosting 90 ap-
plications with heterogeneous capacity and latency requirements.
The results showed that user-location-aware migration decisions
can reduce latency requirement violations by 30.67% on average
without extending maintenance time [6].

6.3. Discussion

This section motivates the adoption of EdgeSimPy to address
the needs of the described case studies, highlighting how using it
is more practical than other existing simulators.

The first case study focused on migrating composite appli-
cations within an edge environment composed of multiple in-
frastructure providers. While many of the existing edge simula-
tors offer support for application composition (e.g., [oTSim-Edge,
YAFS, and iFogSim2), they lack functional abstractions for in-
frastructure providers. In addition, they do not provide features
for managing the lifecycle of containers, which is the preferred
virtualization technology for composite applications.

The second case study focused on edge server maintenance.
Unlike EdgeSimPy, existing edge simulators do not provide the
features for modeling maintenance operations, which involves
incorporating version attributes to differentiate updated from
outdated devices and functions to represent the update process.

Although EdgeSimPy’s built-in entity attributes had to be ex-
tended for the simulations, EdgeSimPy allowed such changes to
be included out of the box without requiring modifications to
its base features. This was possible as EdgeSimPy automatically
identifies custom entity attributes, provided its input format is
followed. This feature mitigates the risk of human-induced errors
arising from changes to the simulator’s base features.

The ease with which EdgeSimPy allows the inclusion of cus-
tom attributes and entities is an advantage over existing simu-
lators, which generally require creation or extension of classes
to represent such attributes and entities. For example, ECSNeT++
and FogNetSim++ are built on top of OMNeT++, a discrete-event
simulator written in C++. In OMNeT++, custom entities can be
modeled using C++ classes called modules. Despite the flexibility
of creating classes for new entities to suit specific needs, entity
instances are bound by the attributes previously defined in their
class definitions, meaning they cannot incorporate unique at-
tributes not initially present in their class constructors. This con-
straint is also observed in EdgeCloudSim [22], MobFogSim [24],
IoTSim-Edge [27], IoTSim-Osmosis [28], and iFogSim2 [29], which
extend the functionality of CloudSim [20] and require exten-
sion of built-in classes or creation of new ones to represent the
necessary features.

YAFS [26] displays the closest resemblance to EdgeSimPy re-
garding extensibility, as it is also written in Python, which is

P.S. Souza, T. Ferreto and R.N. Calheiros

highly flexible regarding extending classes. Nevertheless, as YAFS
lacks a well-defined format for importing and exporting entities,
custom components must be built manually rather than imported
automatically through dataset files, as compatible serialization
formats (e.g., JSON and XML) cannot recognize advanced data
structures used, for example, to define relationships between
objects. Additionally, manual instructions must be passed to the
simulator regarding how entities are updated over the simulation
time and how entity metrics should be gathered. Once importing
custom entities becomes a manual process, YAFS suffers from the
same issue as other simulators based on Java and C++. Whereas
this behavior may not be an issue for small tests, it hinders the
efficient execution of large-scale batch executions.

7. Lessons learned

Several reflections have emerged during EdgeSimPy’s develop-
ment, providing valuable insights for researchers and practition-
ers interested in developing simulation tools.

Selecting Python as the base language for EdgeSimPy has
enabled users to benefit from a broad ecosystem of libraries,
especially those related to emerging fields such as Artificial Intel-
ligence. One key takeaway from our experience developing Ed-
geSimPy that could benefit future simulator developers involves
carefully considering the base programming language, especially
regarding the popularity of the language within the community
and the number of available libraries that users could lever-
age when using the developed simulator. This approach aims to
broaden the utility of the simulator, enabling users to harness
community-supported algorithms and thus potentially reducing
the need for manual implementation.

Throughout our internal testing, we also found that EdgeS-
imPy’s native support for Jupyter Notebooks’ considerably eases
code sharing, as online platforms like Google Colaboratory® and
MyBinder? facilitate real-time collaboration among EdgeSimPy
users, eliminating the necessity for local installation of assets.
With this in mind, we would advise researchers interested in sim-
ulator development to select a base programming language and
design the simulator with user interactivity as a primary require-
ment. Leveraging interactive computing platforms can enhance
the user experience through an environment that supports real-
time collaboration and learning, where users can run experiments
with different configurations, observe the results in real-time, and
adjust their approaches accordingly.

Another lesson we can share with researchers interested in
simulator development is the importance of designing a frame-
work with a decoupled architecture. In EdgeSimPy, we have ob-
served that its strength primarily comes from this highly decou-
pled structure, which includes class-based modularization and
standardized input format, which facilitate the implementation
of new entities and attributes, thereby supporting users with
specific simulation requirements. This degree of decoupling fur-
ther translates into a high level of configurability, where users
can adjust simulation parameters out-of-the-box, including the
simulation tick rate and system models (e.g., user mobility, power
consumption of compute and networking devices, network band-
width sharing control, etc.).

Finally, it is worth noting that appropriate calibration of the
simulator parameters is critical to obtaining an accurate rep-
resentation of real-world experimental setups. The calibratable
parameters include the simulation tick rate and the configuration
of the system model to match the scenario being modeled. For

7 https://jupyter.org/
https://colab.research.google.com/
9 https://mybinder.org/

457

Future Generation Computer Systems 148 (2023) 446-459

instance, this may involve defining a geographically accurate
map, setting up a realistic power consumption model, or mim-
icking actual user mobility patterns. Additionally, the selection of
metrics to be collected during the simulation is another crucial
factor that must be carefully calibrated.

8. Conclusion and future work

Edge Computing is attracting attention as a paradigm that
delivers low latency for applications by pulling processing from
traditional cloud data centers to the network’s edge [2,60]. As the
expectations on the potential benefits of Edge Computing grow,
ensuring that Edge Computing transitions from promise to reality
require developing efficient resource management techniques.

Aside from the development challenges, experimental research
at the edge can be expensive and time-consuming as it in-
volves building and instrumenting an infrastructure with many
interconnected devices. Furthermore, the distributed nature of
the edge makes room for several external factors (e.g., network
instability) to affect the reproducibility and reliability of results,
undermining the extraction of insights needed to mature proto-
types. Consequently, simulation has been considered the primary
approach to accelerate the validation of early-stage prototypes at
a reduced cost [61].

Existing Edge Computing simulators incorporate various fea-
tures for modeling user mobility, application composition, and
energy consumption of the edge infrastructure. However, they fail
to deliver fine-grained control over container provisioning, which
has been acknowledged as the primary choice for deploying ap-
plications at the edge.

To fill this gap, we presented EdgeSimPy, a novel simulator
that models the lifecycle of containerized applications through
several functional abstractions that replicate the behavior of con-
tainer runtimes like Docker. In addition, EdgeSimPy features a
flexible input format that allows users to define custom pa-
rameters for simulated entities out-of-the-box, extending the
simulator’s built-in capabilities without modifying its core fea-
tures. EdgeSimPy’s source code can be accessed via GitHub.!?
Furthermore, a tutorial library!! with several practical examples
has been developed to assist researchers and practitioners in
effectively integrating EdgeSimPy into their work. In future work,
we intend to extend EdgeSimPy networking capabilities to sup-
port the simulation of advanced routing policies that leverage the
programmability of network switches at the edge.

CRediT authorship contribution statement

Paulo S. Souza: Conceptualization, Methodology, Software,
Validation, Writing - original draft. Tiago Ferreto: Conceptualiza-
tion, Supervision, Methodology, Writing - original draft, Writing
- review & editing. Rodrigo N. Calheiros: Supervision, Method-
ology, Writing - original draft, Writing - review & editing.
Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Data availability

No data was used for the research described in the article.

10 https://github.com/EdgeSimPy/EdgeSimPy
1 https://github.com/EdgeSimPy/edgesimpy-tutorials

https://jupyter.org/
https://colab.research.google.com/
https://mybinder.org/
https://github.com/EdgeSimPy/EdgeSimPy
https://github.com/EdgeSimPy/edgesimpy-tutorials

P.S. Souza, T. Ferreto and R.N. Calheiros

Acknowledgments

This work was supported by the PDTI Program, funded by
Dell Computadores do Brasil Ltda (Law 8.248/91). The authors
acknowledge the High-Performance Computing Laboratory of the
Pontifical Catholic University of Rio Grande do Sul for providing
resources for this project.

References

(1]

[2]

3]

M. Satyanarayanan, G. Klas, M. Silva, S. Mangiante, The seminal role of
edge-native applications, in: 2019 IEEE International Conference on Edge
Computing, IEEE, 2019, pp. 33-40.

M. Satyanarayanan, P. Bahl, R. Caceres, N. Davies, The case for vm-based
cloudlets in mobile computing, IEEE Pervasive Comput. 8 (4) (2009) 14-23.
H. Zhao, S. Deng, Z. Liu, J. Yin, S. Dustdar, Distributed redundancy
scheduling for microservice-based applications at the edge, IEEE Trans.
Serv. Comput. (2020).

[4] J. Wang, Z. Feng, S. George, R. lyengar, P. Pillai, M. Satyanarayanan,

[5]

[6]

Towards scalable edge-native applications, in: ACM/IEEE Symposium on
Edge Computing, 2019, pp. 152-165.

P. Souza, A. Crestani, T. Ferreto, F. Rossi, Latency-aware privacy-preserving
service migration in federated edges, in: International Conference on Cloud
Computing and Services Science, 2022, pp. 288-295.

P. Souza, T. Ferreto, F. Rossi, R. Calheiros, Location-aware maintenance
strategies for edge computing infrastructures, IEEE Commun. Lett. 26 (4)
(2022) 848-852.

[7] J. Kazil, D. Masad, A. Crooks, Utilizing python for agent-based modeling:

[8

19

[10]

[11]

[12]

[13]

[14]

[15]

The mesa framework, in: International Conference on Social Computing,
Behavioral-Cultural Modeling and Prediction and Behavior Representation
in Modeling and Simulation, Springer, 2020, pp. 308-317.

A. Hagberg, P. Swart, D. S. Chult, Exploring network structure, dynamics,
and function using NetworkX, Technical Report, Los Alamos National
Lab.(LANL), Los Alamos, NM (United States), 2008.

R. Buyya, S.N. Srirama, G. Casale, R. Calheiros, Y. Simmhan, B. Varghese, E.
Gelenbe, B. Javadi, L.M. Vaquero, M.A. Netto, et al., A manifesto for future
generation cloud computing: Research directions for the next decade, ACM
Comput. Surv. 51 (5) (2018) 1-38.

R. Roman,]. Lopez, M. Mambo, Mobile edge computing, fog and others:
A survey and analysis of security threats and challenges, Future Gener.
Comput. Syst. 78 (2018) 680-698.

S. Shahzadi, M. Igbal, T. Dagiuklas, Z.U. Qayyum, Multi-access edge com-
puting: Open issues, challenges and future perspectives, J. Cloud Comput.
6 (1) (2017) 1-13.

Y. Mao, C. You,]. Zhang, K. Huang, K.B. Letaief, A survey on mobile edge
computing: The communication perspective, [EEE Commun. Surv. Tutor. 19
(4) (2017) 2322-2358.

P. Sharma, L. Chaufournier, P. Shenoy, Y.C. Tay, Containers and virtual
machines at scale: A comparative study, in: International Middleware
Conference, ACM, New York, NY, USA, 2016, pp. 1-13.

K. Wang, J. Rao, C.-Z. Xu, Rethink the virtual machine template, ACM
SIGPLAN Not. 46 (7) (2011) 39-50.

C.-P. Wu, M.A. Suresh, D. Da Silva, Container lifecycle management for
edge nodes: poster, in: ACM/IEEE Symposium on Edge Computing, 2017,
pp. 1-2.

[16] J. Darrous, T. Lambert, S. Ibrahim, On the importance of container image

[17]

[18]

[19]

[20]

[21]

[22]

placement for service provisioning in the edge, in: International Conference
on Computer Communication and Networks, IEEE, 2019, pp. 1-9.

C.G. Kominos, N. Seyvet, K. Vandikas, Bare-metal, virtual machines and
containers in OpenStack, in: 2017 20th Conference on Innovations in
Clouds, Internet and Networks, Icin, IEEE, 2017, pp. 36-43.

K. Ha, Y. Abe, T. Eiszler, Z. Chen, W. Hu, B. Amos, R. Upadhyaya, P. Pillai,
M. Satyanarayanan, You can teach elephants to dance: Agile VM handoff
for edge computing, in: ACM/IEEE Symposium on Edge Computing, 2017,
pp. 1-14.

B.I. Ismail, E.M. Goortani, M.B. Ab Karim, W.M. Tat, S. Setapa, J.Y. Luke, O.H.
Hoe, Evaluation of docker as edge computing platform, in: IEEE Conference
on Open Systems, IEEE, 2015, pp. 130-135.

R.N. Calheiros, R. Ranjan, A. Beloglazov, C.A. De Rose, R. Buyya, CloudSim:
A toolkit for modeling and simulation of cloud computing environments
and evaluation of resource provisioning algorithms, Softw. - Pract. Exp. 41
(1) (2011) 23-50.

D. Kliazovich, P. Bouvry, S.U. Khan, GreenCloud: A packet-level simulator of
energy-aware cloud computing data centers, J. Supercomput. 62 (3) (2012)
1263-1283.

C. Sonmez, A. Ozgovde, C. Ersoy, EdgeCloudSim: An environment for
performance evaluation of edge computing systems, in: International
Conference on Fog and Mobile Edge Computing, 2017, pp. 39-44.

458

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

Future Generation Computer Systems 148 (2023) 446-459

T. Qayyum, AW. Malik, M.A. Khan Khattak, O. Khalid, S.U. Khan,
FogNetSim++: A toolkit for modeling and simulation of distributed fog
environment, IEEE Access 6 (2018) 63570-63583.

C. Puliafito, D.M. Gongalves, M.M. Lopes, LL. Martins, E. Madeira, E.
Mingozzi, O. Rana, L.F. Bittencourt, MobFogSim: Simulation of mobility
and migration for fog computing, Simul. Model. Pract. Theory 101 (2020)
102062.

G. Amarasinghe, M.D. de Assungdo, A. Harwood, S. Karunasekera, ECSNeT++
: A simulator for distributed stream processing on edge and cloud
environments, Future Gener. Comput. Syst. 111 (2020) 401-418.

L. Lera, C. Guerrero, C. Juiz, YAFS: A simulator for IoT scenarios in fog
computing, IEEE Access 7 (2019) 91745-91758.

D.N. Jha, K. Alwasel, A. Alshoshan, X. Huang, RK. Naha, S.K. Battula, S.
Garg, D. Puthal, P. James, A. Zomaya, S. Dustdar, R. Ranjan, [oTSim-edge: A
simulation framework for modeling the behavior of Internet of Things and
edge computing environments, Softw. - Pract. Exp. 50 (6) (2020) 844-867.
K. Alwasel, D.N. Jha, F. Habeeb, U. Demirbaga, O. Rana, T. Baker, S. Dustdar,
M. Villari, P. James, E. Solaiman, R. Ranjan, [oTSim-Osmosis: A frame-
work for modeling and simulating IoT applications over an edge-cloud
continuum, J. Syst. Archit. 116 (2021) 101956.

R. Mahmud, S. Pallewatta, M. Goudarzi, R. Buyya, iFogSim2: An extended
iFogSim simulator for mobility, clustering, and microservice management
in edge and fog computing environments, J. Syst. Softw. 190 (2022)
111351.

N. Nurseitov, M. Paulson, R. Reynolds, C. Izurieta, Comparison of [SON and
XML data interchange formats: A case study, in: International Conference
on Computer Applications in Industry and Engineering, 2009, pp. 157-162.
F. Pezoa,].L. Reutter, F. Suarez, M. Ugarte, D. Vrgo¢, Foundations of
JSON schema, in: International Conference on World Wide Web, 2016,
pp. 263-273.

A. Aral, V. De Maio, I. Brandic, ARES: Reliable and sustainable edge
provisioning for wireless sensor networks, IEEE Trans. Sustain. Comput.
7 (4) (2021) 761-773.

J. Vanura, P. Kriz, Perfomance evaluation of Java, JavaScript and PHP
serialization libraries for XML, JSON and binary formats, in: International
Conference on Services Computing, Springer, 2018, pp. 166-175.

H. Sayama, Introduction to the Modeling and Analysis of Complex Systems,
Open SUNY Textbooks, 2015.

C.M. Macal, MJ. North, Tutorial on agent-based modeling and simulation,
in: Winter Simulation Conference, IEEE, 2005, pp. 14-pp.

E. Bonabeau, Agent-based modeling: Methods and techniques for
simulating human systems, Proc. Natl. Acad. Sci. 99 (2002) 7280-7287.
AM. Law, W.D. Kelton, W.D. Kelton, Simulation Modeling and Analysis,
Vol. 5, Mcgraw-hill New York, 2015.

D.P. Bertsekas, R.G. Gallager, P. Humblet,
Prentice-Hall International New Jersey, 1992.
M.d.S. Conterato, T.C. Ferreto, F. Rossi, W.d.S. Marques, P.S.S. de Souza,
Reducing energy consumption in SDN-based data center networks through
flow consolidation strategies, in: ACM/SIGAPP Symposium on Applied
Computing, 2019, pp. 1384-1391.

P. Reviriego, J.A. Hernandez, D. Larrabeiti,].A. Maestro, Performance eval-
uation of energy efficient ethernet, IEEE Commun. Lett. 13 (9) (2009)
697-699.

A. Beloglazov, R. Buyya, Optimal online deterministic algorithms and adap-
tive heuristics for energy and performance efficient dynamic consolidation
of virtual machines in cloud data centers, Concurr. Comput.: Pract. Exper.
24 (13) (2012) 1397-1420.

F. Bai, A. Helmy, A survey of mobility models, in: Wireless Adhoc Networks,
Vol. 206, University of Southern California, USA, 2004, p. 147.

P. Silva, D. Fireman, T.E. Pereira, Prebaking functions to warm the
serverless cold start, in: International Middleware Conference, 2020,
pp. 1-13.

F. Faticanti, F. De Pellegrini, D. Siracusa, D. Santoro, S. Cretti, Throughput-
aware partitioning and placement of applications in fog computing, IEEE
Trans. Netw. Serv. Manag. 17 (4) (2020) 2436-2450.

M.D. de Assuncao, A. da Silva Veith, R. Buyya, Distributed data stream
processing and edge computing: A survey on resource elasticity and future
directions, J. Netw. Comput. Appl. 103 (2018) 1-17.

L. Zhao, L. Lu, Z. Jin, C. Yu, Online virtual machine placement for increasing
cloud provider’s revenue, IEEE Trans. Serv. Comput. 10 (2) (2015) 273-285.
H. Tian, J. Wu, H. Shen, Efficient algorithms for VM placement in cloud
data centers, in: International Conference on Parallel and Distributed
Computing, Applications and Technologies, IEEE, 2017, pp. 75-80.

J. Shi, O. Gurewitz, V. Mancuso,]J. Camp, EW. Knightly, Measurement
and modeling of the origins of starvation in congestion controlled mesh
networks, in: International Conference on Computer Communications,
IEEE, 2008, pp. 1633-1641.

C. Toprak, C. Turker, A.T. Erman, Detection of DHCP starvation attacks in
software defined networks: A case study, in: International Conference on
Computer Science and Engineering, IEEE, 2018, pp. 636-641.

Data Networks, Vol. 2,

http://refhub.elsevier.com/S0167-739X(23)00234-0/sb1
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb1
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb1
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb1
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb1
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb2
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb2
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb2
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb3
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb3
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb3
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb3
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb3
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb4
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb4
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb4
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb4
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb4
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb5
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb5
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb5
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb5
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb5
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb6
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb6
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb6
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb6
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb6
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb7
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb7
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb7
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb7
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb7
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb7
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb7
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb8
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb8
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb8
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb8
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb8
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb9
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb9
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb9
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb9
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb9
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb9
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb9
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb10
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb10
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb10
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb10
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb10
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb11
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb11
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb11
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb11
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb11
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb12
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb12
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb12
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb12
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb12
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb13
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb13
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb13
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb13
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb13
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb14
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb14
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb14
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb15
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb15
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb15
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb15
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb15
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb16
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb16
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb16
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb16
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb16
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb17
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb17
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb17
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb17
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb17
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb18
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb18
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb18
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb18
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb18
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb18
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb18
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb19
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb19
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb19
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb19
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb19
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb20
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb20
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb20
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb20
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb20
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb20
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb20
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb21
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb21
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb21
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb21
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb21
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb22
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb22
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb22
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb22
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb22
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb23
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb23
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb23
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb23
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb23
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb24
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb24
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb24
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb24
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb24
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb24
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb24
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb25
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb25
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb25
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb25
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb25
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb26
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb26
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb26
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb27
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb27
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb27
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb27
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb27
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb27
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb27
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb28
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb28
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb28
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb28
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb28
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb28
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb28
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb29
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb29
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb29
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb29
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb29
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb29
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb29
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb30
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb30
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb30
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb30
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb30
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb31
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb31
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb31
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb31
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb31
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb32
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb32
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb32
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb32
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb32
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb33
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb33
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb33
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb33
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb33
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb34
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb34
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb34
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb35
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb35
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb35
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb36
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb36
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb36
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb37
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb37
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb37
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb38
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb38
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb38
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb39
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb39
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb39
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb39
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb39
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb39
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb39
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb40
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb40
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb40
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb40
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb40
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb41
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb41
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb41
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb41
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb41
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb41
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb41
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb42
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb42
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb42
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb43
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb43
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb43
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb43
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb43
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb44
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb44
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb44
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb44
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb44
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb45
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb45
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb45
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb45
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb45
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb46
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb46
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb46
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb47
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb47
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb47
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb47
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb47
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb48
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb48
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb48
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb48
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb48
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb48
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb48
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb49
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb49
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb49
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb49
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb49

P.S. Souza, T. Ferreto and R.N. Calheiros

[50]

[51]
[52]
[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

X. Xiang, R. Kennedy, G. Madey, S. Cabaniss, Verification and validation
of agent-based scientific simulation models, in: Agent-Directed Simulation
Conference, Vol. 47, The Society for Modeling and Simulation International
San Diego, CA, USA, 2005, p. 55.

R.G. Sargent, Verification and validation of simulation models, in:
Conference on Winter Simulation, IEEE, 2010, pp. 166-183.

0. Balci, Principles and techniques of simulation validation, verification,
and testing, in: Conference on Winter Simulation, 1995, pp. 147-154.

F. Gebali, Analysis of Computer and Communication Networks, Springer
Science & Business Media, 2008.

L.AD. Knob, C.H. Kayser, P.S.S. de Souza, T. Ferreto, Enforcing deploy-
ment latency SLA in edge infrastructures through multi-objective genetic
scheduler, in: IEEE/ACM International Conference on Utility and Cloud
Computing, 2021, pp. 1-9.

A.A. Stizen, B. Duman, B. Sen, Benchmark analysis of jetson tx2, jetson nano
and raspberry pi using deep-cnn, in: International Congress on Human-
Computer Interaction, Optimization and Robotic Applications, IEEE, 2020,
pp. 1-5.

N. Chen, Y. Yang, T. Zhang, M.-T. Zhou, X. Luo,].K. Zao, Fog as a service
technology, IEEE Commun. Mag. 56 (11) (2018) 95-101.

A. Jindal, G.S. Aujla, N. Kumar, SURVIVOR: A blockchain based edge-
as-a-service framework for secure energy trading in SDN-enabled
vehicle-to-grid environment, Comput. Netw. 153 (2019) 36-48.

C. Anglano, M. Canonico, P. Castagno, M. Guazzone, M. Sereno, A game-
theoretic approach to coalition formation in fog provider federations, in:
International Conference on Fog and Mobile Edge Computing, IEEE, 2018,
pp. 123-130.

A. Aral, L. Brandi¢, Learning spatiotemporal failure dependencies for re-
silient edge computing services, IEEE Trans. Parallel Distrib. Syst. 32 (7)
(2020) 1578-1590.

M. Satyanarayanan, The emergence of edge computing, Computer 50 (1)
(2017) 30-39.

M. Salama, Y. Elkhatib, G. Blair, [oTNetSim: A modelling and simulation
platform for end-to-end IoT services and networking, in: International
Conference on Utility and Cloud Computing, 2019, pp. 251-261.

459

Future Generation Computer Systems 148 (2023) 446-459

Paulo S. Souza is a Ph.D. candidate in Computer
Science at the Pontifical Catholic University of Rio
Grande do Sul (PUCRS), Brazil. He received his Master’s
degree in Computer Science from the same institution
in 2020. His research interest lies primarily in the
fields of computational resource management, Cloud
Computing, Edge Computing, and algorithms.

Tiago Ferreto is an Associate Professor in Computer
Science at the Pontifical Catholic University of Rio
Grande do Sul (PUCRS), Brazil, where he obtained his
Ph.D. degree in Computer Science in 2010. His primary
academic research interests are resource management,
Cloud Computing, Edge Computing, and virtualization.

Rodrigo N. Calheiros is an Associate Professor at the
School of Computer, Data and Mathematical Sciences,
Western Sydney University, Australia. He works in the
field of Cloud Computing and related areas since 2008,
and since then he carried out R&D supporting research
in the area. His research interests also include Big
Data, Internet of Things, Fog Computing, and their
application.

http://refhub.elsevier.com/S0167-739X(23)00234-0/sb50
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb50
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb50
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb50
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb50
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb50
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb50
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb51
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb51
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb51
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb52
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb52
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb52
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb53
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb53
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb53
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb54
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb54
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb54
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb54
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb54
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb54
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb54
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb55
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb55
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb55
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb55
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb55
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb55
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb55
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb56
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb56
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb56
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb57
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb57
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb57
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb57
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb57
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb58
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb58
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb58
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb58
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb58
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb58
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb58
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb59
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb59
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb59
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb59
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb59
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb60
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb60
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb60
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb61
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb61
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb61
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb61
http://refhub.elsevier.com/S0167-739X(23)00234-0/sb61

	EdgeSimPy: Python-based modeling and simulation of edge computing resource management policies
	Introduction
	Background
	Related Work
	Edge Computing Simulators
	Discussion

	EdgeSimPy Architecture
	Core Layer
	Physical Layer
	Base Stations
	Network Switches
	Edge Servers
	Users

	Logical Layer
	Applications
	Services
	Container Registries
	Container Images
	Container Layers

	Management Layer

	EdgeSimPy Verification
	Scenario Description
	Verification Discussion

	EdgeSimPy Case Studies
	Case Study 1: Application Migration
	Case Study 2: Edge Server Maintenance
	Discussion

	Lessons Learned
	Conclusion and Future Work
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	References

