
Journal of Network and Computer Applications 217 (2023) 103676

A
1

Contents lists available at ScienceDirect

Journal of Network and Computer Applications

journal homepage: www.elsevier.com/locate/jnca

Mobility-Aware Registry Migration for Containerized Applications on Edge
Computing Infrastructures
Daniel Chaves Temp a,b, Paulo Silas Severo de Souza c, Arthur Francisco Lorenzon b,
Marcelo Caggiani Luizelli b, Fábio Diniz Rossi a,b,∗

a Federal Institute Farroupilha, Alegrete-RS, Brazil
b Federal University of Pampa, Alegrete-RS, Brazil
c Pontifical Catholic University of Rio Grande do Sul, Porto Alegre-RS, Brazil

A R T I C L E I N F O

Keywords:
Edge computing
Containers
Migration
Registry

A B S T R A C T

Small footprints and fast provisioning times have promoted container adoption for deploying and managing
applications on edge computing environments. As keeping all container images locally would quickly saturate
the storage of resource-constrained edge servers, application provisioning consists of pulling container images
from external repositories, called registries, located in specific locations in the infrastructure. Existing research
reduces deployment time on edge infrastructures by defining the location of container registries. Although
such an approach yields positive results in specific scenarios, it overlooks that the demand for container
images in certain regions can vary over time according to users’ mobility. This work presents a novel strategy
that provisions container registries dynamically based on users’ mobility, spinning up new registries when
application provisioning times start growing excessively and deprovisioning registries far away from users.
Experimental results demonstrate that our approach reduces the application provisioning time issues by 33.19%
on average compared to strategies that allocate container registries statically.
1. Introduction

The popularization of mobile and real-time applications such as
Augmented Reality and Unmanned Aerial Vehicle (UAV) support sys-
tems challenged the dominance of Cloud Computing as the standard
architecture for hosting applications, as not even modern networking
infrastructures could alleviate the noticeable end-to-end delay rendered
by the physical distance between data centers and end devices (Shi and
Dustdar, 2016). Such limitations paved the way for a new paradigm,
called Edge Computing (Satyanarayanan et al., 2009), that brings data
processing to the network’s edge, in proximity to data sources, to couple
the real-time requirements of modern applications.

Among the features that edge computing inherits from the cloud is
virtualization, which enables multitenancy and improves the resource
management process. Once edge resources are virtualized, applications
can be relocated on the fly across the edge infrastructure to deliver low
latency for end-users while they move across the environment.

While virtualization is transparent to end-users, under the hood, it
generally takes place in two possible ways: Virtual Machines (VMs)
and containers. On the one hand, VM-based applications sit on top
of their own operating system, increasing the environment’s isolation

∗ Corresponding author at: Federal Institute Farroupilha, Alegrete-RS, Brazil.
E-mail address: fabio.rossi@iffarroupilha.edu.br (F.D. Rossi).

at the cost of considerable overhead. On the other hand, container-
based applications share libraries and binaries from the host’s operating
system, reducing isolation compared to VMs but yielding greater agility
and lower resource usage (Xavier et al., 2013).

VMs and containers are assembled based on images, which are tem-
plates containing binaries and dependencies used by the applications.
While VM images are usually single-layer, container images are based
on layered file systems, where the top layer hosts user-writable content
and the other layers ship the container dependencies. As underlying
layers are read-only, containers running on the same host can share
these layers’ images, reducing resource usage and shortening the time
needed to provision containers on hosts with cached images.

Given the significant differences between VMs and containers, appli-
cations are migrated differently depending on which type of virtualiza-
tion they rely upon. VM-based applications are relocated through cold
and live migration techniques, which typically transfer the application’s
data from its origin to its destination host. Conversely, container-based
applications are usually spawned in the target host while its underlying
container images are pulled from nearby container image repositories
called container registries.
vailable online 9 June 2023
084-8045/© 2023 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.jnca.2023.103676
Received 29 March 2022; Received in revised form 12 March 2023; Accepted 31 M
ay 2023

https://www.elsevier.com/locate/jnca
http://www.elsevier.com/locate/jnca
mailto:fabio.rossi@iffarroupilha.edu.br
https://doi.org/10.1016/j.jnca.2023.103676
https://doi.org/10.1016/j.jnca.2023.103676
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jnca.2023.103676&domain=pdf

Journal of Network and Computer Applications 217 (2023) 103676D.C. Temp et al.
Despite the increased isolation granted by VMs, containers have
been emerging as the prime option for deploying applications at the
edge (Pallewatta et al., 2019). In addition to presenting a smaller foot-
print than VMs, containers reduce provisioning times from minutes to
seconds compared to VMs, which meets the flexibility and disposability
requirements of modern software architectures (Gannon et al., 2017).

In such a scenario, whenever an application needs to be reprovi-
sioned, a container is spawned in the target location, and the appli-
cation’s binaries and dependencies are pulled from centralized reposi-
tories called container registries. Accordingly, defining registries loca-
tions in the infrastructure represents a pivotal decision to ensure that
applications are timely provisioned (Knob et al., 2021).

There has been considerable prior work in reducing the provisioning
time of containers in edge infrastructures by managing container reg-
istries. Overall, existing solutions concentrate either on (i) optimizing
internal operations on container registries (Anwar et al., 2018; Harter
et al., 2016; Chen et al., 2022), (ii) employing peer-to-peer protocols
to alleviate the network demand between container registries and
edge servers (Nathan et al., 2017; Becker et al., 2021; Ahmed and
Pierre, 2019), or (iii) defining optimized placement policies for con-
tainer registries within the infrastructure (Knob et al., 2021). Despite
their contributions, state-of-the-art approaches fall short in addressing
the dynamic needs of edge environments, adopting static placement
schemes for registries in the infrastructure, which neglect that the
demand for container images in certain regions can change over time
depending on user mobility.

This paper presents a novel strategy that provisions container reg-
istries dynamically in the edge infrastructure based on users’ mobility
based on a threshold-based approach. Whenever our approach detects
that provisioning times are growing excessively, it spins up new reg-
istries nearby the users. Conversely, idle registries are deprovisioned
to avoid resource wastage. Simulations demonstrate that our approach
can reduce provisioning time issues by 33.19% compared to existing
approaches that allocate registries statically.

The remaining of this paper is organized as follows. Section 2 details
the related work. Sections 3 and 4 describe the approached scenario
and our proposed strategy. Section 5 present the evaluation used to
validate our approach against existing strategies. Finally, Section 6
concludes the paper.

2. Related work

Container registries play a vital role in the container ecosystem as
they host and serve container images across the network. At the same
time, inefficient functioning of registries can dramatically increase
application provisioning times or even cause service disruption if they
stop working. Based on that, many efforts have proposed optimizations
in how registries distribute container images to hosts.

Anwar et al. (2018) presented an extensive analysis of Docker
registry workloads from IBM cloud data centers. The authors also intro-
duced a Docker trace replayer tool that allows extracting insights from
realistic workloads, understanding, for example, how they affect the
quality of service of applications in large-scale infrastructures. Based
on their analysis, they proposed two registry design improvements.
The first improvement explores a multi-layer caching scheme that
reduces cache misses by keeping popular container layers in memory
or on SSD disks. The second improvement leverages a prefetching
algorithm to proactively provision popular container layers before they
are requested by applications to reduce provisioning times.

Harter et al. (2016) also used empirical experiments to find insights
for resource management decisions. First, the authors analyzed the
provisioning time of 57 containerized applications to identify the most
impactful factors. Their analysis showed that pulling software packages
accounts for 76% of application provisioning times, while only 6.4%
of downloaded data is required for containers to start. Based on such
findings, the authors introduced Slacker, a novel Docker storage driver
2

that leverages a lazy load approach that allows hosts to fetch images
with the minimum data necessary for applications to start working
while the rest of the data is downloaded later.

Chen et al. (2022) proposed Starlight, a solution for accelerating
the provisioning time of containerized applications through design
improvements on worker nodes and container registries. Starlight’s
motivation is mainly related to the inefficiencies presented by the layer-
based structure used by most container solutions. For example, layer
dependency causes updates to layers low in the layer stack of your
images to force updates to other layers even though their content is
mostly identical. Starlight addresses existing layer-related limitations
by reconstructing the whole provisioning pipeline through optimiza-
tions all along the way, from compute workers to container registries.
Provided optimizations include a push-based approach where workers
can specify what files they already have to avoid unnecessary network
transfers and a set of tools that allow containers to leverage lazy starts
while their data is transferred in the background.

Nathan et al. (2017) discussed the challenges of provisioning con-
tainerized applications on resource-constrained infrastructures.
Whereas resource bounds limit the number of co-hosted applications
that can take advantage of image sharing on a given server, pulling
images from registries can quickly produce network bottlenecks. Based
on that, the authors presented CoMICon, a solution that allows co-
operative management of Docker images across a pool of servers. In
summary, all servers host a container registry and are eligible to serve
container images with their neighbors. A similar approach was followed
by other works like Becker et al. (2021) and Ahmed and Pierre (2019),
which leverage peer-to-peer network protocols and shared file systems
to allow neighboring servers to exchange container images.

Knob et al. (2021) highlighted the significant burden of meet-
ing provisioning time expectations of containerized applications on
edge infrastructures, where containerization challenges are summed to
high server dispersion and network performance constraints. In such
a scenario, inadequate positioning of container registries in the infras-
tructure can significantly increase application provisioning times due to
network saturations. To overcome this challenge, the authors presented
a placement strategy leveraging a fluid community algorithm to define
where container registries should be placed to avoid excessive network
competition in specific links and prolonged application provisioning
times.

2.1. Discussion

Most existing research efforts have focused on improving internal
operations in container registries or leveraging peer-to-peer protocols
to reduce the time needed to transfer container images to hosts. Despite
the technical particularities among proposed solutions, they assume
that container registries are close enough to the hosts asking for con-
tainer images. If such an assumption does not hold, the long network
distance between registries and target hosts could partially nullify their
optimization gains.

Our work complements existing approaches through a novel re-
source management policy that dynamically spins up new registries
when application provisioning times start growing excessively and
deprovisions underutilized registries. The closest work to ours is Knob
et al. (2021), which presents a registry placement policy. Nevertheless,
they assume that the optimal number of registries is known and that
such value stays the same over time, which does not necessarily hold
in edge infrastructures serving mobile users.

Table 1 presents a high-level comparison of the related work and
our approach. To the best of our knowledge, we are the first to reduce
the provisioning time of containerized applications on edge infrastruc-
tures by migrating container registries dynamically according to user

mobility.

Journal of Network and Computer Applications 217 (2023) 103676D.C. Temp et al.
Table 1
Comparison between this work and related approaches.

Work Approach Mobility awareness Paradigm

Anwar et al. (2018) Registry design optimizations × Cloud Computing
Harter et al. (2016) Registry design optimizations × Cloud Computing
Chen et al. (2022) Registry design optimizations × Edge Computing
Nathan et al. (2017) Peer-to-peer image distribution × Cloud Computing
Becker et al. (2021) Peer-to-peer image distribution × Edge Computing
Ahmed and Pierre (2019) Peer-to-peer image distribution × Edge Computing
Knob et al. (2021) Registry placement × Edge Computing
This work Registry migration ✓ Edge Computing
Fig. 1. Sample edge computing scenario.
3. System model

This section presents the edge computing scenario approached in
this work. First, we describe the environment, including the edge
infrastructure. Then, we depict the allocation decisions, including the
relocation of applications and registries. Table 2 summarizes the nota-
tions.

The environment is represented as a set of hexagonal cells that
divide the map, as in the model by Aral et al. (2021). The network
infrastructure comprises a set of base stations  interconnected by a
set of links . In this setting, a base station is represented as 𝑜 = (𝑤𝑜),
where attribute 𝑤𝑜 represents 𝑜’s wireless delay, and a network link
is represented as 𝑣 = (𝑑𝑣, 𝑏𝑣), where attributes 𝑑𝑣 and 𝑏𝑣 denote 𝑣’s
delay and bandwidth capacity.

We assume that each hexagonal cell has a base station and, op-
tionally, an edge server. In our scenario, the infrastructure serves a set
of users  , which access a set of applications . While base stations
provide wireless connectivity to the users located in their cells, edge
servers host the applications. Fig. 1 illustrates such a scenario.

An application is represented as 𝑗 = (𝜇𝑗 , 𝜎𝑗 , 𝛽𝑗 , 𝛾𝑗). We assume a
scenario where applications are containerized. As such, 𝑗 is built on
top of a container image composed of one or multiple container layers
𝜇𝑗 ∈ , where each of these layers is represented as 𝑘 = (𝑞𝑘), with
attribute 𝑞𝑘 representing the layer size. The overall capacity demand of
𝑗 , denoted as 𝜎𝑗 , is the aggregated size of all of its layers, i.e., 𝜎𝑗 =
∑

𝑘∈𝜇𝑗 𝑞𝑘.
The delay of an application 𝑗 at a time step 𝑡 ∈  is given by

𝜂(𝑡,𝑗), as in Eq. (1), considering the wireless delay of 𝑜 (which
represents the base station used by 𝑗 ’s user) and the aggregated delay
of a set of network links 𝜉(𝑡,𝑗), used to route 𝑗 ’s data from its base
station to its user’s base station. In our modeling, 𝜉(𝑡,𝑗) is found
through the Dijkstra shortest path algorithm (Dijkstra et al., 1959) (link
delays as weight). In this context, 𝑗 ’s delay SLA is violated whenever
its delay 𝜂(𝑡,𝑗) exceeds its delay SLA, given by 𝛽𝑗 .

𝜂(𝑡,𝑗) = 𝑤𝑜 +
∑

𝑑𝑣 (1)
3

𝑣∈𝜉(𝑡 ,𝑗)
Table 2
List of notations used in this paper.

Symbol Description

𝑤𝑜 Wireless delay of base station 𝑜
𝑑𝑣 Delay of link 𝑣
𝑏𝑣 Bandwidth capacity of link 𝑣
𝑐𝑖 Capacity of edge server 𝑖
𝜇𝑗 List of layers that compose the image of application 𝑗
𝜎𝑗 Capacity demand of application 𝑗
𝛽𝑗 Delay SLA of application 𝑗
𝛾𝑗 Provisioning time SLA of application 𝑗
𝑞𝑘 Size of container layer 𝑘
𝑔𝑢 List of container layers hosted on registry 𝑢
ℎ𝑢 Demand of registry 𝑢
𝑥𝑒,𝑖,𝑗 Applications’ placement
𝑧𝑒,𝑖,𝑢 Registries’ placement
𝜂(𝑡 ,𝑗) Delay of application 𝑗 at time step 𝑡
𝜉(𝑡 ,𝑗) Links used to route the data of application 𝑗 at time step 𝑡
𝜌(𝑡 ,𝑖) Demand of edge server 𝑖 at time step 𝑡

In addition to hosting applications, edge servers accommodate a set
of container registries , which hold the container layers that compose
the container images used by applications. A container registry is
represented by 𝑢 = (𝑔𝑢, ℎ𝑢), where attributes 𝑔𝑢 and ℎ𝑢 represent 𝑢’s
hosted layers and 𝑢’s demand (sum of the size of all layers hosted by
𝑢). Whenever an application 𝑗 needs to be provisioned or relocated,
the layers that compose its image must be fetched from a container
registry available in the infrastructure. This application provisioning is
detailed in Algorithm 1.

Previous studies show that downloading layers in parallel can in-
crease the provisioning time as a layer is only decompressed and
extracted after the previous layer has been downloaded (Ahmed and
Pierre, 2018). So, in our modeling, layers are downloaded sequentially
(Algorithm 1, lines 2–7). For each layer that composes 𝑗 ’s container
image, we iterate over the list of registries, looking for the closest
registry that hosts that layer. Once the closest registry hosting the layers
is found, it starts being downloaded. This process is repeated until the

Journal of Network and Computer Applications 217 (2023) 103676D.C. Temp et al.

a
h
2
a

𝜕

Algorithm 1: Application provisioning process
1 Function provisionApp(𝑗 , 𝑖):
2 foreach 𝑘 ∈ 𝜇𝑗 do
3 ′ = Registries sorted by distance (asc.) to 𝑖
4 foreach ′

𝑢 ∈ ′ do
5 if ′

𝑢 hosts layer 𝑘 then
6 Download layer 𝑘 from ′

𝑢 to 𝑖
7 break
8 return Time taken to provision 𝑗

entire container image is downloaded. The provisioning time SLA of 𝑗
is violated whenever the result of Algorithm 1 exceeds its threshold 𝛾𝑗 .

An edge server is represented as 𝑖 = (𝑐𝑖), where 𝑐𝑖 denotes 𝑖’s
capacity. The application placement is represented by 𝑥𝑒,𝑖,𝑗 , which
receives 1 if edge server 𝑖 hosts application 𝑗 at time step 𝑡, and
0 otherwise. Similarly, the registry placement is given by 𝑧𝑒,𝑖,𝑢, which
receives 1 if edge server 𝑖 hosts registry 𝑢 at time step 𝑡, and 0
otherwise. The overall demand of edge server 𝑖 at time step 𝑡 is given
by 𝜌(𝑡,𝑖), as in Eq. (2).

𝜌(𝑡,𝑖) =
||

∑

𝑗=1
𝜎𝑗 ⋅ 𝑥𝑒,𝑖,𝑗 +

||

∑

𝑢=1
ℎ𝑢 ⋅ 𝑧𝑒,𝑖,𝑢 (2)

4. Proposed strategy

This section presents our resource management strategy, which em-
ploys a threshold-based approach to proactively relocate applications
and registries based on user mobility, avoiding delay and provisioning
time SLA violations.
Algorithm 2: Proposed resource management strategy.
1 foreach time step 𝑡 ∈  do
2 𝐴 = Applications in  sorted by Eq. (3) (asc.)
3 𝜙 = {}
4 foreach 𝐴𝑗 ∈ 𝐴 do
5 if 𝜂(𝑡 ,𝑗) > 𝛽𝑗 ⋅ 𝜆 then
6 𝜘 = User that accesses 𝐴𝑗
7 𝑆 = Edge servers sorted by delay to 𝜘 (asc.)
8 foreach 𝑆𝑖 ∈ 𝑆 do
9 if 𝐴𝑗 is already hosted by 𝑆𝑖 then
10 break
11 else
12 if 𝑐𝑖 − 𝜌(𝑡 ,𝑖) ≥ 𝜎𝑗 then
13 𝑝𝑡 = 𝑝𝑟𝑜𝑣𝑖𝑠𝑖𝑜𝑛𝐴𝑝𝑝()
14 if 𝑝𝑡 > 𝛾𝑗 ⋅ 𝜌 then
15 𝜙 = 𝜙 ∪ {𝜘}
16 break
17 Deprovision container registries distant from users
18 𝜓 = List of servers with capacity to host a registry
19 while |𝜙| > 0 and |𝜓| > 0 do
20 𝜃 = {}
21 foreach 𝑖 ∈ 𝜓 do
22 foreach 𝑒 ∈ 𝜙 do
23 𝑗 = Application accessed by 𝑒
24 𝑏 = Bandwidth between 𝑖 and 𝑒

25 if
𝜎𝑗
𝑏 ≤ 𝛾𝑗 ⋅ 𝜌 then

26 𝜃𝑖 = 𝜃𝑖 ∪ {𝑒}
27 𝑖 = Edge server in 𝜓 with the largest 𝜃
28 if |𝜃𝑖| > 0 then
29 Provision a container registry on 𝑖
30 𝜓 = 𝜓 − {𝑖}
31 𝜙 = 𝜙 − 𝜃𝑖
32 else
33 𝜓 = {}

The proposed strategy initially arranges the list of applications
ccording to a score function 𝜕 (Eq. (3)), which sorts them based on
ow much their actual delay exceeds their delay threshold (Algorithm
, line 2). In that way, applications with the most intense delay issues
re migrated first.

(𝑡,𝑗) = 𝛽𝑗 − 𝜂(𝑡,𝑗) (3)

Rather than migrating all applications, the proposed algorithm tries
to migrate only those whose delay is close enough to their delay SLAs.
4

Table 3
Overall settings of the three scenarios considered in the evaluation.

Configuration Number of users/Applications Infrastructure demand

Scenario 1 55 25%
Scenario 2 235 50%
Scenario 3 415 75%

The proximity limit between the actual delay and the SLA delay is
defined through a 𝜆 threshold (Algorithm 2, line 5). When migrating an
application 𝑗 , the proposed algorithm gathers the list of edge servers
candidates for hosting it, sorting these servers by their delay to 𝑗 ’s
user (Algorithm 2, line 7). If the closest edge server already hosts 𝑗 ,
no migration is performed (Algorithm 2, lines 9–10). Otherwise, 𝑗 is
migrated to the edge server closest to its user (Algorithm 2, lines 12–
16). If 𝑗 ’s migration time exceeds a threshold 𝜌, 𝑗 ’s user is added
to a list 𝜙, which corresponds to the list of users accessing applications
whose provisioning time SLAs are near to be violated (Algorithm 2, line
15).

After performing application migrations, our algorithm deprovisions
all registries that are not the closest to any of the users in the en-
vironment (Algorithm 2, line 17). Then, it starts making decisions to
provision new registries to prevent provisioning time SLA violations
from happening. In such a process, the algorithm starts gathering a list
of edge servers eligible for hosting a container registry (Algorithm 2,
line 18). Then, it starts an iterative process that seeks to find suitable
registry locations (Algorithm 2, lines 19–33). Such iterative process
repeats until registries are provisioned close enough to all users in 𝜙,
or no edge server in the infrastructure has enough resources to host a
registry.

Without loss of generality, our strategy assumes the existence of
network QoS and computing resource reservation policies within the
infrastructure, as in Souza et al. (2022a,b). As such, there is no room for
conflict over access to resources shared between co-hosted applications
and registries. In addition, ongoing migrations (either from registries or
applications) do not affect each other’s bandwidth or the network delay
of running applications.

When choosing edge servers to host registries, the algorithm stores
a list 𝜃𝑖 for each server 𝑖 ∈ 𝜓 , with the number of users whose
provisioning time SLA violations could be avoided if 𝑖 hosted a registry
(Algorithm 2, lines 21–26). Once 𝜃 is obtained for each 𝑖 ∈ 𝜓 , the
server with the largest 𝜃 (i.e., the one that could avoid the largest
number of upcoming provisioning time SLA violations) is picked for
hosting a registry (Algorithm 2, line 29).

5. Performance evaluation

This section details the experiments conducted to validate the pro-
posed heuristic against baseline migration strategies on edge computing
environments. First, we describe the adopted experimental method
(Section 5.1) and a sensitivity analysis that defines the proposed heuris-
tic’s thresholds (Section 5.2). Finally, we present the achieved results
in three scenarios (Sections 5.3–5.5).

5.1. Experiments description

We consider three edge computing scenarios with different occu-
pation rates during the evaluation: 25%, 50%, and 75%. The main
difference in the parameters of these scenarios that yield the different
occupation rates is the number of users and applications in the envi-
ronment. A detailed description of the chosen parameters is presented
in Table 3.

In the three scenarios, the edge infrastructure comprises 50 edge
servers with two capacity configurations (700 and 1400) distributed
uniformly and wireless antennas with delay = 10. The network topol-
ogy interconnecting the edge servers is created with the Barabási–
Albert model (Barabási and Albert, 1999), with links configured with

Journal of Network and Computer Applications 217 (2023) 103676D.C. Temp et al.

b
a
l
e
r
e
l
m

N
e
g
t
a
m
a

r
f
a
d
c
i
s
t
i

r
i
w
b
u
o
t
d

r
t
s
1
b
p
d
r

a
i
g
a

c
i
a
u
s

delay = {5 ms, 10 ms} and bandwidth = {1, 2}, distributed uniformly.
The initial applications’ placement is defined with the First-Fit heuristic
described in Algorithm 3.
Algorithm 3: Initial application placement heuristic.
1 ′ ← List of applications in 
2 ′ ← List of edge servers in 
3 foreach ′

𝑗 ∈ ′ do
4 foreach edge server ′

𝑖 ∈ ′ do
5 if ′

𝑖 has capacity to host ′
𝑗 then

6 Host application ′
𝑗 on edge server ′

𝑖
7 break

Without loss of generality, we assume an one-to-one relationship
etween applications and users. In addition, users move within the map
ccording to the Pathway mobility model (Bai and Helmy, 2004). Un-
ike random mobility models, which only represent open areas where
ntities can move freely, the Pathway model considers geographic
estrictions when defining the mobility of simulated entities (Khider
t al., 2007). This allows a more accurate representation of scenarios
ike cities, where constructions limit the possible routes within the
ap (Ahmed et al., 2010).

Several works have adopted the Pathway model in Wireless Sensor
etworks (Taleb et al., 2013) and Edge Computing scenarios (Mahmud
t al., 2022; Souza et al., 2022a), typically representing the map as a
raph whose edges denote the streets and freeways that link the ver-
ices, which indicate strategic points that affect mobility (e.g., buildings
nd street corners). In such a setting, mobile entities (e.g., users with
obile devices and connected cars) can only move from one vertex to

nother throughout the edges.
Our evaluation considers two classes of applications based on rep-

esentative use cases for the edge: (i) remote UAV control applications
or farm machinery (McEnroe et al., 2022) and (ii) augmented reality
pplications for remote healthcare (e.g., monitoring and medical proce-
ure guidance) (Hartmann et al., 2022). As these classes of applications
an be implemented on top of multiple software stacks (e.g., operat-
ng systems, programming languages, libraries, etc.), they are repre-
ented in our datasets through multiple container image specifications
o illustrate the heterogeneous software dependencies of large-scale
nfrastructures.

The delay SLA values used in our dataset (30 ms and 60 ms) are
eal requirements of UAV and augmented reality applications specified
n the 3rd Generation Partnership Project (3GPP) (3GPP, 2022). As
e could not find real provisioning time SLAs, as they greatly vary
ased on scenario-specific constraints, provisioning time SLA values
sed in our dataset (80 s and 160 s) are set arbitrarily based on the size
f container images and the network bandwidth specifications within
he datasets. Delay and provisioning time SLA values are uniformly
istributed across applications.

At the beginning of the simulation, we assume that there are 15
egistries distributed randomly across the edge servers. We consider
hree types of container layers with different possible sizes: operating
ystem (35, 40, and 45), runtime (20, 25, 30), and provided service (5,
0, 15). In this setting, the container image of each application is built
ased on three layers, one of each type (operating system, runtime, and
rovided service). For simplicity, server capacities and image sizes are
enoted through abstract size units that could comprehend multiple
esource specifications (e.g., CPU, RAM, and disk).

There is no comparison parameter with our strategy in the liter-
ture, as no other approach allocates registries dynamically in edge
nfrastructures. Thus, we compare our strategy against two naive mi-
ration strategies presented by Yao et al. (2015), called Never Follow
nd Follow User.

Although Never Follow and Follow User perform no registry allo-
ation decisions based on users’ mobility, they allow us to outline the
mpact of provisioning decisions on the availability and performance of
pplications. Never Follow does not migrate applications regardless of
sers’ mobility. As such, it serves as the lower bound for migration deci-
5

ions, allowing us to identify how much mobility-aware policies reduce
Table 4
Sensitivity analysis of delay (𝛼) and provisioning time (𝜌) thresholds.

Configuration Cost (𝛼)

Scenario 1 Scenario 2 Scenario 3

1. 𝜆 = 0.7; 𝜌 = 0.7 14 79.5 145.5
2. 𝜆 = 0.7; 𝜌 = 0.8 14 79 145.5
3. 𝜆 = 0.7; 𝜌 = 0.9 14.5 81.5 150
4. 𝜆 = 0.7; 𝜌 = 1.0 15 81.5 149
5. 𝜆 = 0.8; 𝜌 = 0.7 14 79 146
6. 𝜆 = 0.8; 𝜌 = 0.8 14 79.5 146
7. 𝜆 = 0.8; 𝜌 = 0.9 14.5 81 146
8. 𝜆 = 0.8; 𝜌 = 1.0 15 82.5 148.5
9. 𝜆 = 0.9; 𝜌 = 0.7 24 109.5 201
10. 𝜆 = 0.9; 𝜌 = 0.8 24 109.5 193.5
11. 𝜆 = 0.9; 𝜌 = 0.9 24.5 110 196
12. 𝜆 = 0.9; 𝜌 = 1.0 23.5 111.5 197.5
13. 𝜆 = 1.0; 𝜌 = 0.7 34.5 166 269.5
14. 𝜆 = 1.0; 𝜌 = 0.8 34.5 166 268
15. 𝜆 = 1.0; 𝜌 = 0.9 35 167.5 270.5
16. 𝜆 = 1.0; 𝜌 = 1.0 35 168.5 271.5

delay-related issues against a baseline scenario without migrations.
Follow User complements the evaluation with the opposite approach to
Never Follow. Follow User saturates the infrastructure by unnecessarily
migrating applications when their users are still close enough to them,
and their delay SLA is still being respected.

Whereas Never Follow is a lower bound for migration decisions,
highlighting their improvements regarding reductions in delay issues
against static placements, Follow User is an upper bound for that goal
as it always keeps applications close to their users regardless of the
number of unnecessary migrations performed. Accordingly, comparing
our strategy with Never Follow and Follow User allows us to understand
how well our proposal improves the trade-off between the number of
migrations and the reduction of application delay issues.

Our experiments evaluate the compared strategies regarding the
number of SLA violations (delay and provisioning time), number of mi-
grations, average migration time, number of provisioned registries, and
number of images provisioned inside the registries. The tests were con-
ducted on a Linux machine with Ubuntu 20.04.3 LTS containing 8 CPU
cores and 16 GB of RAM, configured with Python 3.8.10 (GCC 9.3.0).
The experiments assets, including the source code of our simulator and
the dataset, are publicly available at our GitHub repository.1

5.2. Sensitivity analysis

This section presents the sensitivity analysis of the proposed heuris-
tic’s delay (𝜆) and provisioning time (𝜌) thresholds. Without loss of
generality, we consider four values (0.7, 0.8, 0.9, and 1) for the 𝜆
and 𝜌 thresholds. As a comparison parameter, we use a cost function 𝛼
that considers the arithmetic mean between the number of delay and
provisioning time SLA violations achieved by the proposed algorithm
in each threshold configuration. Accordingly, the configurations that
achieve a lower 𝛼 are chosen for each of the three scenarios. Table 4
presents the sensitivity analysis results.

Lower provisioning thresholds (i.e., configurations 1, 2, 5, and
6) produced the best results in the evaluated scenarios. Such results
demonstrate that relocating applications and registries as soon as ap-
plication delays and provisioning times start to grow yields positive
results, especially when the infrastructure has few available resources
(e.g., scenario 3). As multiple configurations tied with the best results,
we chose the best configurations with the lowest thresholds for the
three scenarios (configurations 1, 2, and 1, respectively).

1 Experimental assets: https://github.com/paulosevero/registry_migration.

https://github.com/paulosevero/registry_migration

Journal of Network and Computer Applications 217 (2023) 103676D.C. Temp et al.
Fig. 2. Experimental results of the first evaluated scenario (low occupation).
5.3. Scenario 1

This section presents the results achieved in the first evaluation
scenario, where the 50 edge servers in the infrastructure host 55
applications, resulting in an average infrastructure demand of 25%.

Figs. 2(a) and (b) show the average number of provisioned registries
and container images, respectively. As static strategies, Never Follow
and Follow User keep the set of resources defined in the initial place-
ment during the whole simulation (15 registries hosting 315 images).
Given the low number of users in the environment, the proposed
strategy reduced the number of registries and container images by
46.67% and 49.52% on average, respectively.

Figs. 2(c) and (d) present the migration results. Whereas Never Fol-
low performed no migration as expected, Follow User migrated services
1616 times during the simulation. As Follow User relocated services
whenever users moved between the coverage area of different edge
servers, it presented the lowest average migration time. In comparison
to Follow User, the proposed strategy reduced the number of migrations
by 73.14% while increasing the average migration time by 9.15%.

Figs. 2(e) and (f) depict the SLA violation results. Regarding the
number of delay SLA violations, Never Follow presented the worst
results by maintaining services in their original positions regardless
of users’ mobility. Follow User and the proposed strategy had similar
results (12 and 13 delay SLA violations, respectively), reducing delay
SLA violations by 93.51% and 92.97% compared to Never Follow.
These results demonstrate the effectiveness of the proposed strategy,
which reduced the number of delay SLA violations almost as much as
Follow User, but with far fewer migrations.

As provisioning time SLA violations are counted according to migra-
tions, Never Follow had no violations. At the same time, the proposed
strategy presented the second-best results, reducing the number of
provisioning time SLA violations from 18 to 15 compared to Follow
User by relocating registries dynamically during the simulation.

5.4. Scenario 2

This section presents the results for the second scenario considered
during our evaluation, where the 50 edge servers host 235 applications,
resulting in an average infrastructure demand of 50%.

Figs. 3(a) and (b) present the resource usage results (i.e., the average
number of provisioned registries and container images) achieved by the
6

evaluated strategies. As this scenario is 76.6% more populated than the
first one in terms of number of users, the proposed strategy needed to
allocate 2 more registries than Never Follow and Follow User to ensure
that applications were provisioned within a satisfactory time frame.

Figs. 3(c) and (d) show the number of migrations and average mi-
gration time of the compared strategies during the tests. The proposed
strategy performed 71.96% fewer migrations than Follow User while
slightly reducing the average migration time (from 42.50% to 42.16%).
Comparing such results with the ones from the first scenario, we
observe the increasing complexity of dynamically relocating registries
based on users’ mobility in more populated scenarios.

Figs. 3(e) and (f) present the SLA violation results. As the in-
frastructure has a higher occupation rate in this scenario, the timely
application relocations performed by the proposed strategy produced
the best results, reducing the number of delay SLA violations by 4.29%
compared to Follow User, which was the second-best strategy.

The proposed strategy also reduced the number of provisioning
time SLA violations by 50.81% compared to Follow User, thanks to its
dynamic registry relocation approach. When comparing these results
with those of the first scenario, we observe an increasing reduction
in the provisioning time SLA violations obtained by the proposed
strategy, highlighting the criticality of dynamically relocating registries
in providing sufficiently low application provisioning times in more
populated scenarios.

5.5. Scenario 3

This section presents the results achieved in the third evaluation
scenario, where the 50 edge servers in the infrastructure host 415
applications, resulting in an average infrastructure demand of 75%.

Figs. 4(a) and (b) show the number of provisioned registries and
container images in the infrastructure. Given that many users are
present in the environment, the proposed strategy allocated 28.57%
more registries than Never Follow and Follow User.

Figs. 4(c) and (d) present the migration results. As observed in the
previous scenarios, while Never Follow performs no migration regard-
less of users’ mobility, the proposed strategy reduced the number of
migrations (67.45%) and the average migration time (2.02%) compared
to Follow User.

Figs. 4(e) and (f) show the SLA violation results. Regarding delay
SLA violations, Never Follow got the worst results by performing

Journal of Network and Computer Applications 217 (2023) 103676D.C. Temp et al.
Fig. 3. Experimental results of the second evaluated scenario (medium occupation).
Fig. 4. Experimental results of the third evaluated scenario (high occupation).
no migrations during the simulation. At the same time, Follow User
achieved the second-best results, reducing the number of delay SLA
violations by 91.92% compared to Never Follow.

In this scenario, the proposed strategy reduced the number of delay
SLA violations by 9.02% compared to Follow User, possibly because
performing unnecessary migrations leads to more severe consequences
as the infrastructure is more utilized. Regarding provisioning time SLA
violations, the proposed strategy achieved the best results, reducing the
number of violations by 32.08% compared to Follow User.

6. Conclusion and future work

Container-based virtualization has been acknowledged as a prime
architecture for achieving scalability and better use of resources on
edge computing infrastructures. Once applications are encapsulated
inside containers, which have a smaller footprint than virtual ma-
7

chines, edge servers are less likely to be impacted by the virtualization
overhead, which is pleasing given the resource constraints of edge
infrastructures. At the same time, the agility of containers allows dy-
namically moving applications across the infrastructure as their users
move across the environment.

However, managing containerized applications at the edge implies
handling a significant set of challenges. For instance, timely provision-
ing of containerized applications according to users’ mobility yields
intense communication across the edge infrastructure, as container
images must be transferred from container registries to wherever ap-
plications must be provisioned.

State-of-the-art placement strategies distribute registries in the in-
frastructure to mitigate potential hotspots that lead to prolonged pro-
visioning times. However, as the number of users in the environment
grows, more registries are provisioned to couple with the increasing
demand, which may become inconvenient in resource-constrained edge
infrastructures, as registries can saturate resources that could be better

used to host applications.

Journal of Network and Computer Applications 217 (2023) 103676D.C. Temp et al.

C

W
i
c
–
W
C
r

D

c
i

D

A

t
t
2
S

R

3

A

A

A

A

A

B

B

B

This work envisions a novel approach based on thresholds that
spins up new registries when application provisioning times are be-
coming too high while existing registries away from users are depro-
visioned to avoid resource wastage. Experimental results demonstrate
that our approach reduces the application provisioning time issues
by 33.19% on average compared to strategies that allocate container
registries statically. As future work, we highlight the following research
opportunities:

• Leveraging predictive algorithms to forecast user mobility and
make proactive application and container registry provisioning
decisions.

• Characterizing and mitigating performance degradation issues
caused by competing migrations in the network and co-hosted
applications.

• Designing resource management algorithms that make optimized
decisions in scenarios where multiple users in different locations
access the same application.

RediT authorship contribution statement

Daniel Chaves Temp: Conceptualization, Methodology, Software,
riting – original draft. Paulo Silas Severo de Souza: Conceptual-

zation, Methodology, Software, Writing – original draft. Arthur Fran-
isco Lorenzon: Conceptualization, Writing – original draft, Writing
review & editing. Marcelo Caggiani Luizelli: Conceptualization,
riting – original draft, Writing – review & editing. Fábio Diniz Rossi:

onceptualization, Methodology, Writing – original draft, Writing –
eview & editing.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared to
nfluence the work reported in this paper.

ata availability

We shared the data via GitHub and the link is in the paper.

cknowledgments

This work was partially funded by National Council for Scien-
ific and Technological Development (CNPq 404027/2021-0), Founda-
ion for Research of the State of Sao Paulo (FAPESP 2021/06981-0,
021/00199-8, 2020/05183-0), and Foundation for Research of the
tate of Rio Grande do Sul (21/2551-0000688-9).

eferences

GPP, 2022. 5G; Service requirements for the 5G system (3GPP TS 22.261 version
16.16.0 Release 16). Technical specification (ts), 3rd Generation Partnership
Project (3GPP), pp. 46–51, URL https://portal.etsi.org/webapp/workprogram/
Report_WorkItem.asp?WKI_ID=64134.

hmed, S., Karmakar, G.C., Kamruzzaman, J., 2010. An environment-aware mobility
model for wireless ad hoc network. Comput. Netw. 54 (9), 1470–1489.

hmed, A., Pierre, G., 2018. Docker container deployment in fog computing
infrastructures. In: IEEE International Conference on Edge Computing. pp. 1–8.

hmed, A., Pierre, G., 2019. Docker image sharing in distributed fog infrastructures.
In: International Conference on Cloud Computing Technology and Science. IEEE,
pp. 135–142.

nwar, A., Mohamed, M., Tarasov, V., Littley, M., Rupprecht, L., Cheng, Y., Zhao, N.,
Skourtis, D., Warke, A.S., Ludwig, H., et al., 2018. Improving docker registry design
based on production workload analysis. In: USENIX Conference on File and Storage
Technologies. USENIX, pp. 265–278.

ral, A., Demaio, V., Brandic, I., 2021. ARES: Reliable and sustainable edge provisioning
for wireless sensor networks. IEEE Trans. Sustain. Comput. 1–12.

ai, F., Helmy, A., 2004. A survey of mobility models. In: Wireless Adhoc Networks,
Vol. 206. University of Southern California, USA, p. 147.

arabási, A.-L., Albert, R., 1999. Emergence of scaling in random networks. Science
286 (5439), 509–512.

ecker, S., Schmidt, F., Kao, O., 2021. EdgePier: P2P-based container image distribution
in edge computing environments. In: International Performance, Computing, and
Communications Conference. IEEE, pp. 1–8.
8

Chen, J.L., Liaqat, D., Gabel, M., de Lara, E., 2022. Starlight: Fast container provisioning
on the edge and over the 𝑊𝐴𝑁 . In: USENIX Symposium on Networked Systems
Design and Implementation. USENIX, pp. 35–50.

Dijkstra, E.W., et al., 1959. A note on two problems in connexion with graphs. Numer.
Math. 1 (1), 269–271.

Gannon, D., Barga, R., Sundaresan, N., 2017. Cloud-native applications. IEEE Cloud
Comput. 4 (5), 16–21.

Harter, T., Salmon, B., Liu, R., Arpaci-Dusseau, A.C., Arpaci-Dusseau, R.H., 2016.
Slacker: Fast distribution with lazy docker containers. In: USENIX Conference on
File and Storage Technologies. USENIX, pp. 181–195.

Hartmann, M., Hashmi, U.S., Imran, A., 2022. Edge computing in smart health care
systems: Review, challenges, and research directions. Trans. Emerg. Telecommun.
Technol. 33 (3), e3710.

Khider, I., Furong, W., Hua, Y.W., et al., 2007. A survey of geographic restriction
mobility models. J. Appl. Sci. 7 (3), 442–450.

Knob, L.A.D., Faticanti, F., Ferreto, T., Siracusa, D., 2021. Community-based place-
ment of registries to speed up application deployment on edge computing. In:
International Conference on Cloud Engineering. IEEE, pp. 147–153.

Mahmud, R., Pallewatta, S., Goudarzi, M., Buyya, R., 2022. iFogSim2: An extended
iFogSim simulator for mobility, clustering, and microservice management in edge
and fog computing environments. J. Syst. Softw. 190, 111351.

McEnroe, P., Wang, S., Liyanage, M., 2022. A survey on the convergence of edge
computing and AI for UAVs: Opportunities and challenges. IEEE Internet Things J.
9 (17), 15435–15459.

Nathan, S., Ghosh, R., Mukherjee, T., Narayanan, K., 2017. Comicon: A co-operative
management system for docker container images. In: International Conference on
Cloud Engineering. IEEE, pp. 116–126.

Pallewatta, S., Kostakos, V., Buyya, R., 2019. Microservices-based IoT application place-
ment within heterogeneous and resource constrained fog computing environments.
In: IEEE/ACM International Conference on Utility and Cloud Computing. pp. 71–81.

Satyanarayanan, M., Bahl, P., Caceres, R., Davies, N., 2009. The case for vm-based
cloudlets in mobile computing. IEEE Pervasive Comput. 8 (4), 14–23.

Shi, W., Dustdar, S., 2016. The promise of edge computing. Computer 49 (5), 78–81.
Souza, P., Crestani, v., Rubin, F., Ferreto, T., Rossi, F., 2022a. Latency-aware privacy-

preserving service migration in federated edges. In: International Conference on
Cloud Computing and Services Science. pp. 288–295.

Souza, P.S., Ferreto, T.C., Rossi, F.D., Calheiros, R.N., 2022b. Location-aware mainte-
nance strategies for edge computing infrastructures. IEEE Commun. Lett. 26 (4),
848–852.

Taleb, A.A., Alhmiedat, T., Hassan, O.A.-H., Turab, N.M., 2013. A survey of sink
mobility models for wireless sensor networks. J. Emerg. Trends Comput. Inf. Sci.
4 (9), 679–687.

Xavier, M.G., Neves, M.V., Rossi, F.D., Ferreto, T.C., Lange, T., De Rose, C.A., 2013.
Performance evaluation of container-based virtualization for high performance
computing environments. In: Euromicro International Conference on Parallel,
Distributed, and Network-Based Processing. pp. 233–240.

Yao, H., Bai, C., Zeng, D., Liang, Q., Fan, Y., 2015. Migrate or not? Exploring virtual
machine migration in roadside cloudlet-based vehicular cloud. Concurr. Comput.:
Pract. Exper. 27 (18), 5780–5792.

Daniel Chaves Temp is a Master student in electrical engineering at the Federal
University of Pampa. His research interest focuses on resource allocation in cloud–edge
infrastructures.

Paulo Silas Severo de Souza is a Ph.D. candidate in computer science at the Pontifical
Catholic University of Rio Grande do Sul. His research interest lies primarily in the
fields of resource management, Cloud Computing, Edge Computing, and algorithms.

Arthur Francisco Lorenzon is an Associate professor at the Federal University of Rio
Grande do Sul. His areas of interest include parallelism exploitation aiming energy
efficiency and the development of approaches to automate the TLP exploitation.

Marcelo Caggiani Luizelli is an Associate Professor at the Federal University of Pampa.
His research interest broadly focuses on networking and combinatorial optimization,
focusing on NFV, SDN, and PDPs.

Fábio Diniz Rossi is a Full Professor at the Federal Institute Farroupilha. His research
interest is focused on resource allocation in cloud–edge infrastructures.

https://portal.etsi.org/webapp/workprogram/Report_WorkItem.asp?WKI_ID=64134
https://portal.etsi.org/webapp/workprogram/Report_WorkItem.asp?WKI_ID=64134
https://portal.etsi.org/webapp/workprogram/Report_WorkItem.asp?WKI_ID=64134
http://refhub.elsevier.com/S1084-8045(23)00095-4/sb2
http://refhub.elsevier.com/S1084-8045(23)00095-4/sb2
http://refhub.elsevier.com/S1084-8045(23)00095-4/sb2
http://refhub.elsevier.com/S1084-8045(23)00095-4/sb3
http://refhub.elsevier.com/S1084-8045(23)00095-4/sb3
http://refhub.elsevier.com/S1084-8045(23)00095-4/sb3
http://refhub.elsevier.com/S1084-8045(23)00095-4/sb4
http://refhub.elsevier.com/S1084-8045(23)00095-4/sb4
http://refhub.elsevier.com/S1084-8045(23)00095-4/sb4
http://refhub.elsevier.com/S1084-8045(23)00095-4/sb4
http://refhub.elsevier.com/S1084-8045(23)00095-4/sb4
http://refhub.elsevier.com/S1084-8045(23)00095-4/sb5
http://refhub.elsevier.com/S1084-8045(23)00095-4/sb5
http://refhub.elsevier.com/S1084-8045(23)00095-4/sb5
http://refhub.elsevier.com/S1084-8045(23)00095-4/sb5
http://refhub.elsevier.com/S1084-8045(23)00095-4/sb5
http://refhub.elsevier.com/S1084-8045(23)00095-4/sb5
http://refhub.elsevier.com/S1084-8045(23)00095-4/sb5
http://refhub.elsevier.com/S1084-8045(23)00095-4/sb6
http://refhub.elsevier.com/S1084-8045(23)00095-4/sb6
http://refhub.elsevier.com/S1084-8045(23)00095-4/sb6
http://refhub.elsevier.com/S1084-8045(23)00095-4/sb7
http://refhub.elsevier.com/S1084-8045(23)00095-4/sb7
http://refhub.elsevier.com/S1084-8045(23)00095-4/sb7
http://refhub.elsevier.com/S1084-8045(23)00095-4/sb8
http://refhub.elsevier.com/S1084-8045(23)00095-4/sb8
http://refhub.elsevier.com/S1084-8045(23)00095-4/sb8
http://refhub.elsevier.com/S1084-8045(23)00095-4/sb9
http://refhub.elsevier.com/S1084-8045(23)00095-4/sb9
http://refhub.elsevier.com/S1084-8045(23)00095-4/sb9
http://refhub.elsevier.com/S1084-8045(23)00095-4/sb9
http://refhub.elsevier.com/S1084-8045(23)00095-4/sb9
http://refhub.elsevier.com/S1084-8045(23)00095-4/sb10
http://refhub.elsevier.com/S1084-8045(23)00095-4/sb10
http://refhub.elsevier.com/S1084-8045(23)00095-4/sb10
http://refhub.elsevier.com/S1084-8045(23)00095-4/sb10
http://refhub.elsevier.com/S1084-8045(23)00095-4/sb10
http://refhub.elsevier.com/S1084-8045(23)00095-4/sb11
http://refhub.elsevier.com/S1084-8045(23)00095-4/sb11
http://refhub.elsevier.com/S1084-8045(23)00095-4/sb11
http://refhub.elsevier.com/S1084-8045(23)00095-4/sb12
http://refhub.elsevier.com/S1084-8045(23)00095-4/sb12
http://refhub.elsevier.com/S1084-8045(23)00095-4/sb12
http://refhub.elsevier.com/S1084-8045(23)00095-4/sb13
http://refhub.elsevier.com/S1084-8045(23)00095-4/sb13
http://refhub.elsevier.com/S1084-8045(23)00095-4/sb13
http://refhub.elsevier.com/S1084-8045(23)00095-4/sb13
http://refhub.elsevier.com/S1084-8045(23)00095-4/sb13
http://refhub.elsevier.com/S1084-8045(23)00095-4/sb14
http://refhub.elsevier.com/S1084-8045(23)00095-4/sb14
http://refhub.elsevier.com/S1084-8045(23)00095-4/sb14
http://refhub.elsevier.com/S1084-8045(23)00095-4/sb14
http://refhub.elsevier.com/S1084-8045(23)00095-4/sb14
http://refhub.elsevier.com/S1084-8045(23)00095-4/sb15
http://refhub.elsevier.com/S1084-8045(23)00095-4/sb15
http://refhub.elsevier.com/S1084-8045(23)00095-4/sb15
http://refhub.elsevier.com/S1084-8045(23)00095-4/sb16
http://refhub.elsevier.com/S1084-8045(23)00095-4/sb16
http://refhub.elsevier.com/S1084-8045(23)00095-4/sb16
http://refhub.elsevier.com/S1084-8045(23)00095-4/sb16
http://refhub.elsevier.com/S1084-8045(23)00095-4/sb16
http://refhub.elsevier.com/S1084-8045(23)00095-4/sb17
http://refhub.elsevier.com/S1084-8045(23)00095-4/sb17
http://refhub.elsevier.com/S1084-8045(23)00095-4/sb17
http://refhub.elsevier.com/S1084-8045(23)00095-4/sb17
http://refhub.elsevier.com/S1084-8045(23)00095-4/sb17
http://refhub.elsevier.com/S1084-8045(23)00095-4/sb18
http://refhub.elsevier.com/S1084-8045(23)00095-4/sb18
http://refhub.elsevier.com/S1084-8045(23)00095-4/sb18
http://refhub.elsevier.com/S1084-8045(23)00095-4/sb18
http://refhub.elsevier.com/S1084-8045(23)00095-4/sb18
http://refhub.elsevier.com/S1084-8045(23)00095-4/sb19
http://refhub.elsevier.com/S1084-8045(23)00095-4/sb19
http://refhub.elsevier.com/S1084-8045(23)00095-4/sb19
http://refhub.elsevier.com/S1084-8045(23)00095-4/sb19
http://refhub.elsevier.com/S1084-8045(23)00095-4/sb19
http://refhub.elsevier.com/S1084-8045(23)00095-4/sb20
http://refhub.elsevier.com/S1084-8045(23)00095-4/sb20
http://refhub.elsevier.com/S1084-8045(23)00095-4/sb20
http://refhub.elsevier.com/S1084-8045(23)00095-4/sb20
http://refhub.elsevier.com/S1084-8045(23)00095-4/sb20
http://refhub.elsevier.com/S1084-8045(23)00095-4/sb21
http://refhub.elsevier.com/S1084-8045(23)00095-4/sb21
http://refhub.elsevier.com/S1084-8045(23)00095-4/sb21
http://refhub.elsevier.com/S1084-8045(23)00095-4/sb22
http://refhub.elsevier.com/S1084-8045(23)00095-4/sb23
http://refhub.elsevier.com/S1084-8045(23)00095-4/sb23
http://refhub.elsevier.com/S1084-8045(23)00095-4/sb23
http://refhub.elsevier.com/S1084-8045(23)00095-4/sb23
http://refhub.elsevier.com/S1084-8045(23)00095-4/sb23
http://refhub.elsevier.com/S1084-8045(23)00095-4/sb24
http://refhub.elsevier.com/S1084-8045(23)00095-4/sb24
http://refhub.elsevier.com/S1084-8045(23)00095-4/sb24
http://refhub.elsevier.com/S1084-8045(23)00095-4/sb24
http://refhub.elsevier.com/S1084-8045(23)00095-4/sb24
http://refhub.elsevier.com/S1084-8045(23)00095-4/sb25
http://refhub.elsevier.com/S1084-8045(23)00095-4/sb25
http://refhub.elsevier.com/S1084-8045(23)00095-4/sb25
http://refhub.elsevier.com/S1084-8045(23)00095-4/sb25
http://refhub.elsevier.com/S1084-8045(23)00095-4/sb25
http://refhub.elsevier.com/S1084-8045(23)00095-4/sb26
http://refhub.elsevier.com/S1084-8045(23)00095-4/sb26
http://refhub.elsevier.com/S1084-8045(23)00095-4/sb26
http://refhub.elsevier.com/S1084-8045(23)00095-4/sb26
http://refhub.elsevier.com/S1084-8045(23)00095-4/sb26
http://refhub.elsevier.com/S1084-8045(23)00095-4/sb26
http://refhub.elsevier.com/S1084-8045(23)00095-4/sb26
http://refhub.elsevier.com/S1084-8045(23)00095-4/sb27
http://refhub.elsevier.com/S1084-8045(23)00095-4/sb27
http://refhub.elsevier.com/S1084-8045(23)00095-4/sb27
http://refhub.elsevier.com/S1084-8045(23)00095-4/sb27
http://refhub.elsevier.com/S1084-8045(23)00095-4/sb27

	Mobility-Aware Registry Migration for Containerized Applications on Edge Computing Infrastructures
	Introduction
	Related Work
	Discussion

	System Model
	Proposed Strategy
	Performance Evaluation
	Experiments Description
	Sensitivity Analysis
	Scenario 1
	Scenario 2
	Scenario 3

	Conclusion and Future Work
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	Acknowledgments
	References

